首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用水热法合成了两种新型的二维(2D)稀土配位聚合物[Ln(PDC)(OH)(H2O)2]n (Ln = Eu (1) and Tb (2), H2PDC = 3,4-吡啶二羧酸),通过元素分析、红外光谱、热分析和X射线单晶衍射等技术对其进行了表征。单晶结构分析表明这两种配合物都显示出包含有一维Ln-O-Ln链的二维层状结构,层间又进一步通过 π-π 堆积和氢键作用扩展成三维超分子网络结构。此外,这两种配合物的固体在室温下都有强的荧光发射。  相似文献   

2.
A series of Ln‐sulfoterephthalate coordiantion polymers, namely, [Ln(2‐stp)(4,4′‐bbpi) (H2O)2] · H2O [Ln = Eu ( 1 ), Tb ( 2 ), Dy ( 3 )] (2‐H3stp = 2‐sulfoterephthalate; 4,4′‐bbpi = 4,4′‐bisbiphenyl‐imidazole), were prepared by hydrothermal method and characterizatied by EA, IR, TGA, and PXRD technologies. Single crystal X‐ray diffraction analyses show that the three complexes are isostructral two‐dimensional network featuring helical chain structures. The fluorescence studies show that the emissions of the coordination polymers exhibit the characteristic peaks of lanthanide ions, which means they could be potential fluorescence materials.  相似文献   

3.
Two novel rare earth coordination polymers, [La(pydc)2(H2O)][La(pydc)(H2O)2]·H2O (1) and [Sm(pydc)2(H2O)][Sm(pydc)(H2O)2]·H2O (2) (pydc=pyridine-2,6-dicarboxylate) were hydrothermally synthesized and characterized by the elemental analyses, IR spectra and TG analyses. Single crystal X-ray diffractions show that 1 and 2 are isostructural compounds. In the compounds of 1 and 2, the 1D lanthanide helical chains are connected each other by lanthanide binuclear dimer as building blocks to form a novel 3D covalent framework.  相似文献   

4.
Three lanthanide coordination polymers, [Ln4(BDC)6(H2O)2] n (Ln = Er, 1; Ln = Tm, 2; BDC = 1,2-benzenedicarboxylate) and {[Nd2(BDC)(EDTA)(H2O)2] · 1.5H2O} n , 3, were prepared by hydrothermal synthesis and characterized by elemental analysis, IR spectra, as well as single-crystal X-ray diffraction. The isostructural coordination polymers 1 and 2 exhibit four different coordination modes, which are rarely found in one lanthanide complex. Complex 3 displays a 2-D wave-like network assembled by two polycarboxylate ligands.  相似文献   

5.
《Journal of Coordination Chemistry》2012,65(16-18):2714-2721
Abstract

A series of heterometallic metal-organic frameworks (MOFs) employing pyridine-2,6-dicarboxylate and 1,10-phenanthroline as ligands have been synthesized hydrothermally. In isostructural compounds 13 [Ln(pydc)3Cu2(phen)4]·I·× H2O (Ln?=?La (1), Nd (2), Dy (3); x?=?6, 5, 5), the metalloligand [Ln(pydc)3] assembles with [Cu(phen)2] units to construct a dodecanuclear cluster via Cu–O bonds and π–π interactions. The clusters are further stacked into three-dimensional supramolecular frameworks with nano-sized cavities. In [La(Hpydc)(pydc)2Zn(phen)3]·3H2O (4), the metalloligand [Ln(Hpydc)(pydc)2] assembles with [Zn(phen)3] units to construct a tetranuclear cluster via electrostatic interaction and π–π interaction. This work reveals that the changes of lanthanide metalloligands and the coordination pattern of 3d transition centers would result in significant variation in the final structures. The thermal, optical, and electrochemical properties have been well investigated.  相似文献   

6.
Saccharinate complexes of the fourteen trivalent lanthanide cations and YIII were prepared by reaction between the respective lanthanide carbonates and saccharin in aqueous solution. Their crystal structures were determined by single crystal X‐ray diffractometry. They represent three different structural types. The first family, of composition [Ln(sac)(H2O)8](sac)2�H2O (sac = anion of saccharin; Ln = La, Ce, Pr, Nd.Sm, Eu), belongs to the monoclinic space group P21/c with Z = 4 and the LnIII cation is in a tricapped trigonal prismatic environment with nine‐fold oxygen coordination. The second group of composition [Ln(sac)2(H2O)6]‐(sac)(Hsac)�4H2O with Ln = Gd, Dy, Ho, Er, Yb, Lu, and Y, pertains to the triclinic P1¯‐ space group, with Z = 2 and constitutes a new example of complexes containing simultaneously saccharin and its anion in the lattice. The TmIII and TbIII compounds, which are also triclinic (space group P1¯‐ and Z = 2) present two closely related structures conformed by three and two [Ln(sac)(H2O)7]2+ crystallographically independent complexes, respectively, with the [Tm(sac)(H2O)7]3(sac)6�9H2O and [Tb(sac)(H2O)7]2(sac)4�6H2O composition. For all the heavier lanthanides (Gd‐Lu) and yttrium the cation presents eight‐fold oxygen coordination, with the ligands at the corners of a slightly distorted square Archimedean antiprism.  相似文献   

7.
Two 2-D metal carboxylate coordination compounds [Tb(pydc)(ox)1/2(H2O)2] (1) and [Cd(pydc)(me)(H2O)]2 · H2O (2) (pyridine-2,5-dicarboxylic acid = pydc, oxalic acid = ox, me = methanol) have been synthesized under hydrothermal conditions. Carboxylates are building blocks in the formation of zigzag chain and cockle stair-like chain structures for 1 and 2, respectively. Both the compounds have been structurally determined by single-crystal X-ray diffraction, and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and fluorescence spectra.  相似文献   

8.
The hydrothermal reactions of Ln2O3 (Ln = Nd and Eu) with pyridine‐2,5‐dicarboxylic acid (H2pydc) resulted in the formation of two isomorphic three‐dimensional (3D) polymeric LnIII complexes, [Ln(pydc)(nic)·H2O]n (Ln = Nd( 1 ) and Eu( 2 )), in which nic (nicotinate; also named as pyridine‐2‐carboxylic acid) might have been formed from the pydc ligands through the C–C bond cleavage and CO2 molecules releasing. Pydc ligands bridge lanthanide centers to form the three‐dimensional framework featuring hexagonal channels along the axis a which are occupied by bridging nic anions and mono‐coordinated water molecules. From the topological point of view, two three‐dimensional nets are binodal with six‐ and three‐connected nodes, which display a distorted rutile (4.62)2(42·610·83) topology. Magnetic measurements (2‐300 K) reveal that all polymers possess weak antiferromagnetic property. A strong fluorescence emission spectrum of compound 2 was observed.  相似文献   

9.
Two novel lanthanide‐based coordination polymers with 2D lattice‐type motif, [Ln2(CAM)3(H2O)4]·2H2O (CAM = 4‐Hydroxypyridine‐2,6‐dicarboxylate; Ln = Tb( 1 ), Pr( 2 )), have been prepared by hydrothermal reaction of Ln(OH)3, CAM and water at 160 °C and characterized by single‐crystal X‐ray diffraction analysis, IR and TGA. The investigation of luminescent property reveals that 1 exhibits characteristic green emission of Tb3+ ions.  相似文献   

10.
Three series of lanthanide coordination polymers, namely catena‐poly[[lanthanide(III)‐μ2‐(benzene‐1,2‐dicarboxylato)‐μ2‐[2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]] monohydrate], {[Ln(C8H4O4)(C22H14N3O2)]·H2O}n or {[Ln(1,2‐bdc)(L)]·H2O}n, with lanthanide (Ln) = dysprosium (Dy, 1 ), holmium (Ho, 2 ) and erbium (Er, 3 ), poly[bis(μ2‐benzene‐1,3‐dicarboxylato)bis[μ2‐2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]dilanthanide(III)], [Ln2(C8H4O4)2(C22H14N3O2)2]n or [Ln2(1,3‐bdc)2(L)2]n, with Ln = gadolinium (Gd, 4 ), Ho ( 5 ) and Er ( 6 ), and poly[(μ2‐benzene‐1,4‐dicarboxylato)[μ2‐2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]lanthanide(III)], [Ln(C8H4O4)(C22H14N3O2)]n or [Ln(1,4‐bdc)(L)]n, with Ln = Dy ( 7 ), Ho ( 8 ), Er ( 9 ) and ytterbium (Yb, 10 ), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. Compounds 1 – 3 possess one‐dimensional loop chains with Ln2(COO)2 units, which are extended into three‐dimensional (3D) supramolecular structures by π–π interactions. Isostructural compounds 5 and 6 show 6‐connected 3D networks, with pcu topology consisting of Ln2(COO)2 units. Compounds 7 – 10 display 8‐connected 3D frameworks with the topological type rob , consisting of Ln2(COO)2 units. The influence of the coordination orientations of the aromatic dicarboxylate groups on the crystal structures is discussed.  相似文献   

11.
Two new 4d–4f heterometallic coordination polymers [AgLn(pydc)2(H2O)3] · x(H2O) [Ln = Eu, x = 1.25 (1); Ln = Tb, x = 1.25 (2); pydc = 2,6-pyridinedicarboxylate] have been synthesized and characterized by elemental analysis, IR spectroscopy, and single crystal X-ray diffraction. Both structures display the same unusual 1-D heterometallic coordination polymer based on Ln building blocks and Ag ions. Thermal stabilities and luminescent properties of 1 and 2 are presented.  相似文献   

12.
Three novel lanthanide coordination polymers {[Ce2(HOnic)4(Onic)2(H2O)2]·6H2O}n ( 1 ), {[Ln(HOnic)(Onic)‐ (H2O)5·(HOnicH)]·H2O}n [HOnicH=6‐hydroxynicotinic acid, Ln=Nd ( 2 ), Pr ( 3 )] have been synthesized and characterized by elemental analyses, IR spectrum and single crystal X‐ray diffraction. Structure analyses reveal that 1 features a 2D plane structure while compounds 2 and 3 possess a 1D chain‐like polymeric structure. TG analyses indicate that 1 exhibits higher thermostability than 2 and 3 , which was attributed to the layer polymeric structure of 1 .  相似文献   

13.
A series of lanthanide coordination polymers, [LnIII(mal)(ox)0.5(H2O)2]·2H2O (Ln = Pr ( 1 ), Nd ( 2 ), and La ( 3 ); H2mal= maleic acid; H2ox = oxalic acid), were synthesized firstly by the reaction of LnIII nitrate salts with maleic anhydrid and oxalic acid under hydrothermal conditions and were characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. X‐ray diffraction analyses reveal that they are crystallized in orthorhombic space group Fddd. Lanthanide metal center atom (Ln) and its corresponding centrosymmtric atom link through two chelating/bridging bidentate carboxyl groups of maleic acid ligands to form an infinite inorganic rod‐shaped building unit. These rod‐shaped building units were linked to each other through the carbon atoms of the maleate anions on the [110] plane to form lanthanide‐maleic acid layers. The oxalic acid pillared lanthanide‐maleic acid layers with intersected channels by free water molecules consist of a 3D framework structure. The thermogravimetric analyses of 1 – 3 were discussed in detail. The courses of the thermal decomposition of complexes are similar.  相似文献   

14.
Five coordination polymers containing linear lanthanide–oxygen clusters 1–5 have been synthesized by a hydrothermal reaction of 3-(quinolin-8-yloxy) phthalic acid (H2L) with the respective lanthanide salt. The X-ray single crystal structural analyses revealed that these five crystalline materials belong to two isostructures with formulas [LnHL2(H2O)2]n (Ln1, where Ln = La 1, Ce 2, Pr 3) and [Ln(HL)(L)(H2O)]n (Ln2, where Ln = Nd 4, Sm 5), respectively, which are attributed to the effect of lanthanide contraction. In both structures, the lanthanide cations were bridged by two carboxyl groups of L2? through Ln–O bonds to form 1-D linear lanthanideoxygen clusters, which were further connected by intermolecular ππ stacking interactions between quinolinyl units to generate 3-D supramolecular polymers with moderate luminescence and high thermal stability.  相似文献   

15.
Reactions of oxydiacetic acid (H2oda) with lanthanide oxide, nitrate, chloride, and carbonate gave six lanthanide oxalate–oxydiacetate mixed-ligand coordination polymers {[Ln(oda)(H2O) x ]2(ox)} n [x = 3 for Ln = La, Ce, Pr, Gd, Tb, (15), and x = 2 for Ln = Er (6)]. Oxydiacetic acid is decomposed into oxalic acid in this reaction. In the crystal structures of 16, oxydiacetate and the lanthanides build a chain, and the oxalate groups bridge two chains to form 1-D double-chain ladder-shaped structures, connected by intermolecular hydrogen bonds to form a 2-D network structure. These compounds contain approximately 3.0 × 6.4 Å2 channels along the c-axis. The infrared spectra and thermal behaviors of 16 are also investigated.  相似文献   

16.
A series of Ln–Ni heterometallic coordination polymers, {[Ln2Ni(MIDA)4(H2O)6](H2O)4} (Ln = La ( 1 ), Ce ( 2 ), Pr ( 3 ), and Nd ( 4 ); H2MIDA = N‐methyl‐iminodiacetic acid), were obtained under hydrothermal conditions. Single crystal X‐ray diffraction revealed that they feature two‐dimensional isomorphic frameworks, which could be viewed as the construction by one‐dimensional {Ln}n chain connecting by bridges of [Ni(MIDA)2]2. The magnetic measurements reveal that compounds 2 – 4 exhibit antiferromagnetic properties. TGA results indicate compounds 1 and 4 have good thermostability with the critical temperature of 375 °C.  相似文献   

17.
A 4d–4f heterometallic coordination polymer, [AgLa(pydc)2]·3H2O ( 1 ) (H2pydc = pyridine‐3,4‐dicarboxylic acid), has been synthesized under hydrothermal conditions, and further characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. Complex 1 features a three‐dimensional (3D) framework containing one‐dimensional (1D) channels occupied by free water molecules, which is constructed from 1D inorganic heterometallic chains and linear pydc linkers. To the best of our knowledge, complex 1 represents a rare example of 3D open‐framework 4d–4f heterometallic coordination polymer. Moreover, after removal of the water molecules from complex 1 , the remaining material has high thermal stability and good adsorption behavior towards nitrogen gas.  相似文献   

18.
Abstract

Coordination polymers (CPs) of mixed-ligand lanthanide complexes [Ln2(1,3-pdta)(TPA)(H2O)2]n·nH2O [Ln?=?La, 1; Ce, 2; Pr, 3; Nd, 4] (1,3-H4pdta = 1,3-propanediaminetetraacetic acid; H2TPA?= terephthalic acid) were hydrothermally synthesized with flexible 1,3-pdta and rigid TPA ligands. Moreover, lanthanide propanediaminetetraacetates [Ln(1,3-Hpdta)(H2O)]2n·nH2TPA·xH2O [Ln?=?Sm, 5; Gd, 6] with multi-layered structures were also obtained. In 14, both 1,3-pdta and TPA coordinate with lanthanide ions through carboxyl oxygen and nitrogen atoms. In 5 and 6, only 1,3-Hpdta coordinates with the central lanthanide ion, where one nitrogen atom in 1,3-Hpdta is protonated, and TPAs are crystallized as H2TPA with the central multi-layered structures of [Ln(1,3-Hpdta)(H2O)]2n through very strong hydrogen bonds [2.504(4) Å]. Solid-state 13C NMR analysis of 1 revealed the coordination of carboxyl groups. However, the methylene groups of 1,3-pdta showed an obvious upfield shift, which can be attributed to the effects of the phenyl ring in TPA ligand. The successful synthesis of these mixed-ligand lanthanides provides a rational design of such lanthanide CPs with flexible and rigid ligands.  相似文献   

19.
Several new coordination polymers of lanthanide tartrate with three types of topological structures, namely [Ln2(DL-tart)3(H2O)3] · 1.5H2O [Ln = La (1), Nd (2), and Sm (3)], [Ln2(D-tart)3(H2O)2] · 3H2O [Ln = Eu (4), Tb (5), and Dy (6)], and [Lu(C4H4O6)(C4H5O6)] · 2.5H2O (7), have been synthesized by hydrothermal synthesis. X-ray crystallographic analysis reveals that 1 is a unique 3-D network, whereas 5 with a 3-D network and 7 with a 2-D network are isomorphous with their analogs. All lanthanide ions are nine-coordinate through oxygen donors. Four different coordination modes of tartrate occur in these complexes. Luminescence spectra reveal that 4, 5, and 6 emit characteristic luminescence of corresponding lanthanide ions.  相似文献   

20.
Eight isostructural polymeric coordination compounds of the general formula [Ln(DMF)(H2O)4][Ln(DMF)2(H2O)4][M4Te4(CN)12]·DMF·nH2O (Ln = Er, Ho, Gd, or Sm; M = W or Mo) were prepared for the first time by evaporation in air of aqueous solutions containing the cuboidal telluride anionic complex of tungsten [W4Te4(CN)12]6– or molybdenum [Mo4Te4(CN)12]7–, lanthanide chlorides, and dimethylformamide. The resulting polymeric coordination complexes with layered structures were characterized by X-ray diffraction analysis and IR spectra. The magnetic susceptibilities of the gadolinium complexes were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号