首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
研究了电化学还原氧化石墨烯(ErGO)及多壁碳纳米管(MWNTs)复合物修饰电极的制备及应用,建立了一种尿酸测定的电化学分析新方法。通过滴涂法将物理超声共混的氧化石墨烯(GO)和MWNTs复合物修饰于裸电极上,随后将GO进行电化学还原制得ErGO-MWNTs复合物修饰电极。实验发现,相比于单独的ErGO修饰电极或MWNTs修饰电极,ErGO-MWNTs修饰电极具有更好的电催化活性,这归因于二者的协同电催化作用。对该电极进行尿酸检测的实验条件和参数进行了优化。在优化条件下,电极的氧化峰电流与尿酸浓度在0.13~45μmol/L内呈现出良好的线性关系,相关系数为0.99681,检出限为50 nmol/L。  相似文献   

2.
本文制备了氧化石墨烯-金纳米棒复合物(GO-GNRs).利用滴涂法制备了修饰电极(GO-GNRs/GCE),通过循环伏安法,还原了GO-GNRs复合物中的GO,制得电化学还原的石墨烯-金纳米棒修饰电极(ERGO-GNRs/GCE).研究了酒石黄在不同电极上的电流响应,结果表明,ERGO-GNRs/GCE对酒石黄的氧化有很好的电催化作用,其浓度在0.05~6.0μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为15 nmol/L.利用ERGO-GNRs/GCE可完成样品中酒石黄含量的测定.  相似文献   

3.
通过原位还原法制得GR-CS/GCE电极,对制得的电极用红外光谱、拉曼光谱进行表征,结果均表明氧化石墨烯被成功还原。采用循环伏安法和示差脉冲伏安法研究了4-NP的电化学行为,发现其氧化电流信号较GCE及GO-CS/GCE电极明显增强且电位负移,表明修饰电极对4-NP的氧化具有一定的催化作用。对富集电位、富集时间、扫速及缓冲溶液的pH等实验条件进行了优化,在最优条件下,4-NP的浓度与电流的线性响应范围为0.01~40.0μmol/L,线性回归方程为I(μA)=0.364C(μmol/L)+0.618(R=0.9988),检出限为5.2 nmol/L(S/N=3),将该电极用于实际样品中4-NP检测,加标回收率为95.0%~101.0%。  相似文献   

4.
以N-甲基吡咯烷酮(NMP)为剥离试剂,通过超声剥离石墨制备出了石墨烯纳米片(GS),离心分离后,将GS固体重新分散在较低沸点的N,N-二甲基甲酰胺(DMF)中,经挥发溶剂制备出石墨烯纳米片修饰玻碳电极(GS/GCE)。研究了土霉素的电化学行为,发现在GS/GCE上土霉素的氧化信号得到显著提高。优化了检测条件,建立了一种快速、简便测定土霉素的高灵敏电化学新方法,线性范围为5.0×10-8~1.0×10-6 mol/L,检出限为1.5×10-8 mol/L。将该方法用于尿液样品分析,结果准确。  相似文献   

5.
先以氧化石墨烯(Graphen oxide,GO)为阴离子掺杂剂,采用电化学聚合法制备了聚吡咯-氧化石墨烯复合膜(PPy-GO)。分别在0.10 mol/L Na Cl和0.10 mol/L NaOH溶液中对其进行还原和过氧化处理,制得过氧化聚吡咯-还原氧化石墨烯复合膜(OPPy-ERGO)。再以此OPPy-ERGO复合膜为载体,采用电化学沉积法制备了氧化铜-过氧化聚吡咯-还原氧化石墨烯复合膜修饰电极(CuO-OPPy-ERGO/CCE)。通过扫描电镜和电化学方法对此电极进行表征,研究了葡萄糖在此修饰电极上的电化学行为。结果表明,此电极对葡萄糖的电氧化过程表现出高的催化活性和良好的抗干扰能力。在0.20 mol/L NaOH溶液中,安培法检测葡萄糖的线性范围为5.0×10~(-7)~1.0×10~(-3)mol/L,检出限(3Sb)为2.0×10~(-7)mol/L,灵敏度为121.8μA/(mmol·L~(-1))。该电极用于血清中葡萄糖含量的测定,加标回收率为96.0%~110.1%。  相似文献   

6.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐为粘合剂制备了碳糊电极,然后将氧化石墨烯滴涂到碳糊电极表面制成了一种新型的氧化石墨烯修饰碳离子液体电极。研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。实验结果表明,在0.1 mol/L醋酸盐缓冲溶液中(pH4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,在2.0×10-7~1.5×10-5mol/L浓度范围内鸟嘌呤和腺嘌呤的浓度在该电极上与电化学响应信号呈良好的线性关系,相关系数分别为为0.992和0.996。信噪比为3时,检出限为1.0×10-8mol/L。  相似文献   

7.
利用Nafion(全氟聚苯乙烯磺酸溶液)-氧化石墨烯复合物、硫堇和纳米金构建了H2O2酶传感器。首先将氧化石墨烯分散在体积分数0.2%Nafion溶液中制得Nafion-氧化石墨烯的复合物,并将其固定在玻碳电极表面,通过静电吸附将带正电荷的硫堇吸附到Nafion-氧化石墨烯复合膜修饰的玻碳电极表面,再利用静电吸附将纳米金修饰于电极上,通过纳米金来固定辣根过氧化物酶从而制得H2O2传感器。用循环伏安法和计时电流法考察该修饰电极的电化学特性。H2O2浓度为5.5×10-6~1.0×10-3mol/L时,酶电极的响应电流值与H2O2的浓度呈良好的线性关系,检出限为1.80×10-6mol/L。  相似文献   

8.
研究了石墨烯衍生物片层尺寸对Hg~(2+)检测的影响。通过超声制得片层大小不同的氧化石墨烯(GO),利用循环伏安法电化学还原得到相应的还原氧化石墨烯(rGO),然后利用循环伏安法研究了rGO/玻碳电极(GCE)和L-半胱氨酸(L-cys)/rGO/GCE两种修饰电极对于Hg~(2+)的响应,以及不同片层大小氧化石墨烯对应的rGO/GCE和L-cys/rGO/GCE修饰电极对于Hg2+响应的不同。  相似文献   

9.
刘雪  王兰  樊阳  刘凤杰 《化学通报》2012,(5):458-462
利用在玻碳电极上修饰了TiO2-石墨烯-Nafion复合膜制得的修饰电极进行多巴胺(DA)和尿酸(UA)的同时测定。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了该修饰电极的电化学行为。在pH为7.0的磷酸盐缓冲液(PBS)中,修饰电极对于DA和UA的电化学氧化具有良好的电催化性能。DA和UA的氧化峰电流分别在2~120和60~300μmol/L浓度范围内呈良好的线性关系,检出限分别为0.066和0.102μmol/L。实验结果表明,TiO2-石墨烯-Nafion复合膜修饰电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性。  相似文献   

10.
通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及RGO或MnO_2-RGO修饰电极上的循环伏安响应。MnO_2-RGO/GCE复合修饰电极实现AA、DA和UA氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为268和128 m V。检测DA的线性范围为0.06~1.0μmol/L和1.0~80μmol/L,检出限为1.0 nmol/L(S/N=3)。制备的MnO_2-RGO/GCE成功用于人血清样品的多巴胺含量分析。  相似文献   

11.
罗宿星  伍远辉  代小容  勾华 《化学通报》2012,(11):1031-1035
制备了水溶性良好、带负电的氧化石墨烯-多壁碳纳米管(GO-MWNTs)纳米复合材料,用带正电的锰卟啉(MnTMPy)自组装到GO-MWNTs表面,构建了MnTMPy/GO-MWNTs/GC修饰电极。利用电化学阻抗谱对所制备的修饰电极进行表征,利用循环伏安法研究了苏丹红Ⅰ在电极上的电化学行为。结果表明,在50nmol/L~15μmol/L浓度范围内,苏丹红Ⅰ的差分脉冲伏安响应电流与其浓度呈现良好的线性关系,相关系数为0.996,检出限为20nmol/L。该方法可简便、快捷、灵敏地检测辣椒粉中苏丹红Ⅰ的含量。  相似文献   

12.
制备了氧化石墨烯修饰玻碳电极,并运用循环伏安法对氧化石墨烯进行了直接的电化学还原,研究了L-色氨酸在该电化学还原的氧化石墨烯修饰玻碳电极上的电化学行为。结果表明,L-色氨酸在该修饰电极上其氧化峰电流与裸玻碳电极相比增大了7.1倍,且峰电位负移80mV。利用差分脉冲伏安法,在pH=6.5的磷酸盐缓冲溶液中测定L-色氨酸,氧化峰电流与其浓度在0.4~65.0μmol/L范围内呈良好的线性关系,相关系数为0.998,方法检出限为0.2μmol/L。  相似文献   

13.
制备了铂纳米/壳聚糖/石墨烯修饰电极。研究了鸟嘌呤(G)在修饰电极上的电化学行为。结果表明,该修饰电极对G的氧化具有明显的电催化作用。利用示差脉冲伏安法(DPV)对G进行检测,在0.1~10μmol/L浓度范围内,G的氧化峰电流和浓度成良好的线性关系,线性方程为I(μA)=2.08-1.92c(×10~(-5)mol/L),相关系数为0.9977,检测限为32 nmol/L(S/N=3)。该修饰电极用于血清样品中G的检测。  相似文献   

14.
采用了滴涂法制备了还原氧化石墨烯@DNA修饰电极,采用了循环伏安法(CV)和差分脉冲伏安法(DPV)两种电化学方法,探究了还原氧化石墨烯@DNA修饰电极对Cu~(2+)电催化活性和氧化峰电流与Cu~(2+)浓度之间的关系。实验结果表明,DNA和还原氧化石墨烯所修饰的电极对Cu~(2+)具有优异的电催化活性。即时电流响应信号同Cu~(2+)的浓度线性方程为i(μA)=-2.098 8-0.538 5c(×10~(-5) mol/L),线性相关系数R=0.996,最低检出限为1×10~(-8) mol/L。并且修饰电极具有良好的重现性和稳定性。  相似文献   

15.
采用水合肼原位化学还原法制备了还原氧化石墨烯(rGO)-多壁碳纳米管(MWCNTs)复合物,将该复合物滴涂于玻碳电极表面,通过电化学方法向该复合膜表面沉积了纳米氧化铜(CuO),制得氧化铜-还原氧化石墨烯-多壁碳纳米管三元复合物修饰电极(CuO-rGO-MWCNTs/GCE)。通过扫描电镜、EDS能谱及电化学交流阻抗技术对该电极进行了表征。研究了L-酪氨酸(L-Tyr)在该修饰电极上的电化学行为。结果表明,CuO-rGO-MWCNTs/GCE对L-Tyr的电氧化表现出高的催化活性。在优化实验条件下,安培法检测L-Tyr的线性范围为2.0×10~(-8)~1.8×10~(-4)mol/L,检出限为5.0×10~(-9)mol/L(S/N=3)。  相似文献   

16.
建立了一种循环伏安法制备CuNi/β-环糊精/还原氧化石墨烯修饰玻碳电极(CuNi/β-CD/ERGO/GCE)的方法。通过多巴胺在该修饰电极上的电化学行为发现,该电化学传感器实现了快速、灵敏的测定多巴胺。该传感器用差分脉冲伏安法(DPV)测定多巴胺时,其电化学响应电流与多巴胺浓度在0.01~20μmol/L之间呈线性关系,检测限为8 nmol/L。该传感器用于尿液样品中的多巴胺检测,回收率在95.6%~107.2%之间。  相似文献   

17.
马心英  吴义芳  李霞 《应用化学》2012,29(7):824-829
利用滴涂的方法制备了石墨烯修饰电极;石墨烯修饰电极对对乙酰氨基酚(ACOP)的电化学氧化具有明显的催化作用。 研究了ACOP在石墨烯修饰电极上的电化学行为,建立了测定ACOP的电化学分析新方法。 考察了磷酸盐缓冲溶液的pH值对ACOP电化学行为的影响。 结果表明,氧化还原峰电位随pH值升高发生负移;在pH=6.0磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上呈现一对灵敏的氧化还原峰。 对乙酰氨基酚在石墨烯修饰电极上的氧化峰峰电流与其浓度在6.00×10-7~4.00×10-5 mol/L范围内呈良好的线性关系,相关系数为0.994 0;检出限为5.00×10-8 mol/L。 其回归方程为:ipa(A)=3.00c+1.21×10-5。 该修饰电极具有良好的灵敏度、选择性和稳定性,可用于对乙酰氨基酚药片分析。  相似文献   

18.
采用滴涂法和电沉积法制备了氧化石墨烯/铁氰化铈(CeFe(CN)6)纳米复合膜修饰玻碳电极。用扫描电镜对氧化石墨烯和氧化石墨烯/CeFe(CN)6纳米复合膜进行了表征。分别用循环伏安法和差分脉冲伏安法研究了扑热息痛和咖啡因在修饰电极上的电化学行为。结果表明,在0.1 mol/L醋酸盐缓冲溶液(pH5.0)中,扑热息痛和咖啡因在此修饰电极上具有良好的电化学行为,扑热息痛和咖啡因分别在1.0×10-7~6.0×10-5mol/L和1.0×10-6~1.3×10-4mol/L浓度范围内与电化学响应信号呈良好的线性关系,相关系数分别为0.990和0.992;信噪比为3时,扑热息痛和咖啡因检出限分别为5.0×10-8mol/L和5.2×10-7mol/L。将本方法用于人尿样品分析,回收率为96.1%~105.4%。  相似文献   

19.
以氧化石墨烯和半胱氨酸为前驱体,利用循环伏安法还原-聚合构建了还原氧化石墨烯(rGO)/聚半胱氨酸(L-cys)修饰玻碳电极(GCE)(rGO/L-cys/GCE)。研究了色氨酸在该修饰电极上的电化学行为。结果表明,基于rGO优异的电子传导性能、强吸附富集及L-cys对色氨酸的催化作用,rGO/L-cys/GCE显著提高了色氨酸检测的灵敏度。最优实验条件下,色氨酸浓度在0.03~10.0μmol/L范围内,峰电流与其浓度呈良好线性关系,检出限为8 nmol/L。将该修饰电极用于香蕉中色氨酸含量的测定,回收率为93.8%~105.0%。该修饰电极构建方法简便且灵敏度高,可用于实际样品测定。  相似文献   

20.
以石墨片为原料,在硫酸铵电解液中利用电化学剥离的方法制备了一种石墨烯(eGr)。将该材料修饰到玻碳电极(GCE)表面构建了电化学传感器,利用该传感器探究了杀螟硫磷的电化学行为。对缓冲溶液pH、电极修饰量等实验条件进行了优化。结果表明:该电极具有较大的活性比表面积以及良好的电子转移速度,对杀螟硫磷具有良好的电催化氧化作用。通过线性扫描伏安法检测了杀螟硫磷,其线性响应浓度在1~100μmol/L之间,检出限为70 nmol/L。该传感器可应用于河水中杀螟硫磷的残留分析,回收率为97.2%~100.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号