首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
改性羟基磷灰石/聚乳酸纳米复合材料的结晶行为   总被引:1,自引:0,他引:1  
利用溶剂复合的方法制备了具有良好生物相容性的表面接枝聚(γ-苄基-L-谷氨酸)的改性羟基磷灰石/聚乳酸纳米复合材料, 并研究了其熔融与结晶行为. 结果表明, 聚乳酸的玻璃化转变温度为60.3 ℃, 而复合材料的玻璃化转变温度达到65.8 ℃, 不同样品在140 ℃等温结晶后, 改性羟基磷灰石/聚乳酸复合材料的球晶直径仅为聚乳酸(PLLA)球晶直径的16.7%~66.7%. 复合材料的熔点提高到184.4 ℃.  相似文献   

2.
A new surface modification method of hydroxyapatite nanoparticles (n‐HA) by surface grafting reaction of L ‐lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L ‐lactic acid. Surface‐modified HA nanoparticles (p‐HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS‐NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n‐HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p‐HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p‐HA/PLLA composite containing 15 wt % of p‐HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n‐HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p‐HA/PLLA composites had better thermal stability than n‐HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p‐HA/PLLA composites lost their mechanical properties more slowly than did n‐HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005  相似文献   

3.
Functionalized eggshell powder (NES) with nucleating surface of calcium phenylphosphonic acid (PPCa) for poly(l-lactide) (PLLA) was compounded with PLLA via melt blending to improve the cold crystallization process of PLLA. The cold crystallization behavior of the PLLA/NES composites was studied by differential scanning calorimetry. The isothermal cold crystallization rates have been enhanced obviously in the PLLA/NES composites than in the neat PLLA, indicative of the excellent nucleating effects of NES on PLLA. For the nonisothermal cold crystallization, the overall crystallization rate of PLLA increased with both increasing NES loadings and heating rate. It was found that the Avrami equation and the combined Ozawa–Avrami model could describe the experiment data successfully.  相似文献   

4.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

5.
通过研究2-溴丙酰基单封端的PLLA结晶行为,来探讨聚合物结晶过程中的端基效应.首先通过开环聚合的方法(ROP),以苯甲醇为引发剂,合成了聚(L-乳酸)(PLLA).再将PLLA自由末端的羟基转化为2-溴丙酰基,得到2-溴丙酰基单封端的PLLA-Br.研究表明,2-溴丙酰基末端引入后,聚合物链段运动能力受到抑制,PLL...  相似文献   

6.
Poly(L ‐lactide) (PLLA)/multiwall carbon nanotube (MWNT) composites were prepared by the solvent‐ultrasonic‐casting method. Only very low concentrations of MWNTs (<0.08 wt %) were added in the composites. Isothermal and nonisothermal crystalline measurements were carried out on PLLA/MWNT composites to investigate the effect of MWNTs on PLLA crystalline behavior. DSC results showed that the incorporation of MWNTs significantly shortened the crystalline induction time and increased the final crystallinity of the composite, which indicated MWNTs have a strong nucleation effect on PLLA even at very low concentrations. The nonisothermal crystallization measurements showed that the MWNTs greatly speed up crystallization during cooling. From isothermal crystallization results, both PLLA and PLLA/MWNT composites samples closely followed a relationship based on Lauritzen‐Hoffman theory, with the regime II to III transition shifting to lower temperature with increasing MWNT concentration. A double melting peak appeared in both nonisothermal and isothermal measurements. The conditions under which it appeared were found to closely depend on the regime II‐III transition temperature obtained from Lauritzen‐Hoffman theory. From the magnitude and position of melting peaks, it is proposed that the double melting peak is caused by a disorder‐order crystal phase transition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2341–2352, 2009  相似文献   

7.
通过变温广角X射线衍射(WAXD)、 差示扫描量热法(DSC)和偏光显微镜(POM)研究了聚左旋乳酸-聚乙二醇(PLLA-PEG)二嵌段共聚物的非等温结晶行为, 并用Ozawa方程分析了PLLA-PEG的非等温结晶动力学. 实验结果表明, 高熔点的硬段PLLA结晶符合Ozawa理论, 而低熔点的软段PEG对PLLA的结晶起到了稀释剂的作用; 当软段PEG开始结晶时, 已经结晶完全的硬段PLLA限制了PEG的结晶, 使得软段PEG的结晶不符合Ozawa理论. 此外, 不同降温速率下的结晶形貌研究结果表明, 随着降温速率的增加, 晶体经历了从环带球晶、 环带和十字消光的混合球晶到典型的十字消光球晶的转变, 并且球晶的尺寸也明显变小.  相似文献   

8.
A throughout investigation of crystallization and melting behavior of poly(L -lactic acid) is detailed in this contribution. Crystallization analyses, conducted in both isothermal and non-isothermal conditions, revealed the occurrence of a sudden acceleration in phase transition rate in the temperature range between 100 and 118 °C. This unusual increase, due to very high rates of spherulite growth, seems not related to morphological changes of PLLA spherulites, nor to unexpected variations in nucleation rate. DSC analyses disclosed multiple melting behavior of PLLA, depending on crystallization temperature. At low temperatures the very high crystallization rates lead to the achievement of low values of crystalline degree, with formation of small and/or defective crystals, which have a large tendency to reorganize into more stable structures during the heating scan that leads to complete fusion. The multiple melting process of PLLA was also analyzed at different heating rates.  相似文献   

9.
非等温结晶对PLLA的热行为和形貌的影响   总被引:2,自引:0,他引:2  
将聚L-乳酸(PLLA)熔化非等温熔融结晶, 采用DSC、POM、SEM等技术研究了降温速率对PLLA的热行为和形貌的影响. PLLA在低降温速率(2 ℃·min-1)下的结晶在118 ℃伴随有结晶机制的转变. 玻璃化温度和结晶度随着降温速率的降低而增大. 随着降温速率的降低, 球晶尺寸增大, 当降温速率为10 ℃·min-1 时, PLLA 为无定型材料. 采用模压成型的方法并控制降温速率制备了具有球晶结构的条状PLLA 生物材料, 与高降温速率下制备的PLLA相比,低降温速率下获得的具有球晶结构的PLLA材料的断面更光滑和致密, 但脆性增强.  相似文献   

10.
聚乳酸/纳米SiO_2复合材料的熔融和冷结晶行为   总被引:2,自引:0,他引:2  
采用熔融共混法制备了聚乳酸(PLLA)/纳米SiO2复合材料;利用透射电镜观察了复合材料的微观形貌;利用差示扫描量热仪测定了该复合材料的熔融行为和非等温冷结晶行为;利用Jeziorny法和Mo法研究了PLLA及其复合材料的非等温冷结晶动力学.结果表明,纳米SiO2在PLLA基体中具有良好的分散性和异相成核作用,使得PLLA基体的结晶峰向低温方向移动;复合体系的熔融温度和熔融焓的变化与SiO2的加入量密切相关.采用Jeziorny法和Mo法均可以很好地处理复合材料的非等温冷结晶过程.  相似文献   

11.
采用氯仿/乙醇共沸溶液浇铸法制备了混合均匀的聚L-乳酸/聚(天冬氨酸-co-乳酸)共混物(PLLA/PAL)体系.研究了PLLA/PAL共混体系的热性能、结晶行为、形态结构和力学性能,评价了PLLA和PAL之间的相容性.结果表明,PAL对PLLA的结晶行为和热性能产生了较大的影响,共混物的结晶度较低,共混体系中部分PAL会进入PLLA球晶的片晶而导致PLLA球晶结构不完善,熔点降低.PAL的含量小于20%的PLLA/PAL共混物的拉伸强度和断裂延伸率均高于纯PLLA.PLLA和PAL分子链相互缠结,产生的氢键使分子链间存在较强的相互作用,具有较好的相容性.  相似文献   

12.
The nucleation and crystallization of two types of strongly segregated poly(lactide)-block-polyethylene diblock copolymers with an approximate 50/50 composition has been investigated. One material contains an amorphous PLDA block (PLDA-b-PE) and the other contains a semicrystalline PLLA block (PLLA-b-PE). The overall isothermal crystallization rate of the PLLA block was slowed down as compared to homo-PLLA by the covalently bonded PE chains that were molten at the PLLA crystallization temperatures. This crystallization rate depression of the PLLA block produces a coincident crystallization process when PLLA-b-PE is cooled down from the melt at rates larger than 2 °C/min. The overall crystallization rate of the PE block is faster when it is covalently bonded to previously crystallized PLLA than when it is attached to a rubbery PDLA block, this results from a nucleation effect of PLLA on the PE block. Polarized Light Optical Microscopy (PLOM) confirmed the confined nature of the crystallization process within lamellar microdomains for both diblock copolymers, since neither PLLA nor PE are capable of breaking out and spherulites can not be formed.  相似文献   

13.
Poly(l-lactide) (PLLA) and functionalized multi-walled carbon nanotubes (f-MWNTs) were used to prepare PLLA/f-MWNTs composites via solution blending. The structure and morphology of f-MWNTs were characterized using FT-IR and SEM. The spherulitic morphologies, isothermal crystallization kinetics, and melting behavior of the resulting PLLA/f-MWNTs composites were investigated by POM and DSC, respectively. Both Avrami and Lauritzen–Hoffman kinetics models are used to quantitatively evaluate the crystallization half-time t 1/2, the nucleation constant K g, and the work of chain folding q of PLLA and its composites. Temperature modulated DSC was used to investigate the mechanism of overlapped endothermic and exothermic peaks of PLLA/f-MWNTs composites. The results indicated that the SiO2 coating on the MWNTs could react with coupling agent KH-550 leading to the formation of f-MWNTs, which can be evenly dispersed in PLLA matrix. A decrease of spherulite size and an increase of crystallization rate were observed from POM measurements for PLLA/f-MWNTs. The multiple melting behavior can be attributed to the melt-recrystallization process of PLLA/f-MWNTs composites at certain temperature.  相似文献   

14.
This article contains a detailed analysis of the crystallization behavior of poly(l-lactic acid) (PLLA). Crystallization rates of PLLA have been measured in a wide temperature range, using both isothermal and non-isothermal methods. The combined usage of multiple thermal treatments allowed to obtain information on crystallization kinetics of PLLA at temperatures almost ranging from glass transition to melting point. Crystallization rate of PLLA is very high at temperatures between 100 and 118 °C, showing a clear deviation from the usual bell-shaped curve. This discontinuity has been ascribed to a sudden acceleration in spherulite growth, and is not associated to morphological changes in the appearance of PLLA spherulites. Experimental data of spherulite growth rates of PLLA have been analyzed with Hoffman-Lauritzen method. Applicability and limitations of this theoretical treatment have been discussed.  相似文献   

15.
Free poly(L‐lactic acid) (PLLA) sheaves and spherulites were prepared by thermally induced phase separation method from its tetrahydrofuran solution without the assistance of other additives. The effects of variables such as polymer concentration, quenching temperature and time on the morphology of PLLA spherulites were studied. The morphology, size, degree of crystallinity, and crystal structure of spherulites were characterized by SEM, DSC and XRD, and so forth. No obvious sheaves or spherulites were observed at quenching temperature of 8 and 0 °C, whereas sheaves composed of fluffy nanofibers with diameter of about 250 nm were formed at quenching temperature range of ?10 to ?40 °C. With increasing quenching time, the PLLA morphology changed from small sheaves to big sheaves (cauliflower‐like) to spherulites. Low concentration (3 and 5 wt %) solutions were favorable for the formation of sheaves, whereas high concentration (7 wt %) solution as good for the formation of spherulites. The mechanism for the formation of PLLA sheaves or spherulites was examined by the isothermal and nonisothermal crystallization of PLLA/tetrahydrofuran solutions using DSC. The Avrami equation was used to analyze the data and good linear double‐logarithmic plots were obtained. The Avrami exponent n and rate constant K indicated the crystal growth mechanism was intermediate between completely instantaneous and completely sporadic types of nucleation and growth, and the spherulites were there dimensional. Compared to the spherulites embedded in the bulky film obtained from the melt processing, this study provided a feasible technique for the fabrication of free PLLA spherulites. The PLLA spherulites composed of fluffy nanofibers with a high porosity (≥90%) may be potentially applied as functional materials such as catalyst support, adsorption and biomedical materials, and so forth. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1476–1489  相似文献   

16.
Poly(L‐lactide) (PLLA) composites with TiO2‐g‐poly(D‐lactide) (PDLA), which was synthesized by surface‐initiated opening ring polymerization with TiO2 as initiator and Sn(Oct)2 as catalyst, were prepared by solution casting. The synthesized TiO2‐g‐PDLA was characterized by transmission electron microscope (TEM) and dynamic laser scattering (DLS), showing larger size corresponding to that of TiO2. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements were further carried out and indicated that PDLA was grafted onto TiO2 through covalent bond. For PLLA/TiO2‐g‐PDLA composites, the stereocomplex crystallites were formed between PDLA grafted on the surface of TiO2 and the PLLA matrix, which was determined by FT‐IR, differential scanning calorimetry (DSC), and X‐ray diffractometer (XRD). The influence of stereocomplex crystallites on the rheological behavior of PLLA/TiO2‐g‐PDLA was investigated by rheometer, which showed greater improvement of rheological properties compared to that of PLLA/TiO2 composites especially with a percolation content of TiO2‐g‐PDLA between 3 wt%–5 wt%. The crystallization and melting behavior of PLLA/TiO2‐g‐PDLA composites were studied by DSC under different thermal treatment conditions. The formed PLA stereocomplex network acted as nucleating agents and a special interphase on the functional surface of TiO2, which resulted in imperfect PLLA crystal with lower melting temperature. When the thermal treatment was close to the melting temperature of PLA stereocomplex, the crystallinity approached to the maximum. The isothermal crystallization study by polarizing microscope (POM) indicated that stereocomplex network presented stronger nucleation capacity than TiO2‐g‐PDLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
非晶态聚消旋乳酸(PDLLA)对PLLA的结晶行为有较大的影响。本文利用差示扫描量热仪(DSC)和偏光显微镜(POM)对不同分子量PLLA、PDLLA按不同比例制得的共混物结晶进行了系统研究。结果表明随PDLLA含量的增大PLLA冷结晶温度升高,且越接近熔融温度。PDLLA分子量较小时PLLA球晶特征被明显破坏,PDLLA分子量较大时PLLA更易形保持球晶特征且易形成环带球晶形貌,这与结晶速率与非晶组分的扩散速率匹配程度有关。低分子量的PDLLA使PLLA的最大生长速率对应的温度出现在较低温度。  相似文献   

18.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

19.
用偏光显微镜和原子力显微镜对比研究了PEG-PLLA嵌段共聚物在110℃或120℃等温结晶后的结晶形貌.发现在110℃时只有PEG5000-PLLA2300和PEG5000-PLLA6300在偏光显微镜下呈现环带球晶形貌,在原子力显微镜高度图中显示明显的环带,并具有交替凸凹起伏形貌.而PEG5000-PLLA12000球晶中没有出现环带形貌而是生成了规则的环线.在120℃时,PEG5000-PLLA12000的球晶中才生成了规则的环带图案,原子力显微镜也显示了其球晶具有明显的交替凸凹起伏形貌,说明过冷度直接影响环带球晶的生成.产生周期性凸凹起伏和明暗交替消光是由片晶沿着球晶的半径方向周期性扭转造成的,片晶在凸起部分是Edge-on取向,在凹下部分是Flat-on取向.  相似文献   

20.
Functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into poly(L‐lactide)/polyethylene glycol (PLLA/PEG) blend and the effects of FMWCNTs on crystallization behaviors, rheological, and mechanical properties of PLLA/PEG/FMWCNTs were investigated. The results show that FMWCNTs exhibit good distribution in the nanocomposites and absorb some PEG to agglomerate around them. The crystallization behavior of PLLA in the nanocomposites is greatly dependent on the content of FMWCNTs. At low content of FMWCNTs, the addition of FMWCNTs improves the crystallization behavior of PLLA by enhancing the crystallization temperature and accelerating the crystallization rate, whereas at high content of FMWCNTs, the crystallization of PLLA is restricted to a certain degree. Rheological properties show the formation of the network structure of FMWCNTs at high content, which is the main reason for the retarded crystallization behavior of PLLA due to the network structure providing restriction to mobility and diffusion of PLLA chains to crystal growth fronts. The mechanical properties show that FMWCNTs exhibit reinforcement effect for plasticized PLLA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号