首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
郭可信  林保军 《物理学报》1978,27(6):729-745
对镍铬合金中单一滑移面内和两个滑移面间的位错反应,特别是动态下的反应,进行了透射电子显微镜观察,并对其中的一些位错组态进行了衍衬分析。1.六角位错网络主要是单一滑移面内柏氏矢量相差120°的两组位错间反应的结果;2.与螺型位错一样,刃型或混合型位错也能在两个滑移面间交滑移;3.两个滑移面间的位错反应有时在其截线方向生成不滑动的位错(如L.C.位错锁)并不能完全阻挡住这两个滑移面上的位错运动;4.在含铝、钛的镍铬合金中,超点阵位错的反应与不含铝、钛的合金或无序固溶体中的位错反应相似。 关键词:  相似文献   

2.
本文从稳定的位错组态的能量最低原理出发,分析了六角结构金属中能够出现的特殊位错组态,这些位错组态由两组分别位于间距很小的两个滑移面上的位错列阵组成,用透射电子显微镜观察时,它们呈现为有规则的位错“网络”。 关键词:  相似文献   

3.
Ice single crystals were deformed under torsion and dislocation arrangements were analyzed by synchrotron topography at ESRF (European Synchrotron Radiation Facility). Profile analysis of the topographs revealed the scale-invariant character of the dislocation arrangement with long-range correlations. Dislocation density gradients are shown to be slightly anti-correlated as the intensity profile is similar to an anti-persistent random walk-like signal. This analysis reveals the influence of internal stresses on dislocation arrangement up to the sample scale. Similar observations in reversed torsion experiments, together with strong hardening behaviour, allow a mechanism of cross-slip of basal dislocations on prismatic planes to be suggested for interpretation of local dislocation interaction behaviour.  相似文献   

4.
A new type of misfit dislocation multiplication is deduced from high-voltage electron micrographs of thin Ge layers on GaAs substrates. Two misfit dislocations with the same Burgers vectors on different glide planes cross and annihilate at the intersection point resulting in the formation of two angular dislocations. The tip of one of these dislocations may reach the growth surface by glide breaking into two separate dislocation segments. These segments may glide to form additional misfit dislocations, which may undergo the same multiplication process.  相似文献   

5.
 用分子动力学方法计算模拟了沿〈111〉晶向冲击加载过程中,单晶铜中纳米孔洞(直径约1.3 nm)的演化及其周围区域发生塑性变形的过程。模拟结果表明,在沿〈111〉晶向冲击加载后,在面心立方(fcc)结构中的4族{111}晶面中有3族发生了滑移。伴随孔洞的增长,在所激活的3族{111}晶面上,观察到位错在孔洞表面附近区域成核,然后向外滑移,其中在剪切应力最大的〈112〉方向上,其位错速度超过横波声速,其它〈112〉方向的位错速度低于横波声速。模拟得到的位错阻尼系数范围与实验值基本符合。由于孔洞周围产生的滑移在空间比较对称,孔洞增长形貌接近球形。在恒定的冲击强度下,孔洞半径增长速率近似保持恒定,其速率随着冲击强度的增加而增大。  相似文献   

6.
Results obtained in a study of the dislocation structure of zinc subjected to the effect of a laser beam are described in this paper. The difference in the location of dislocations after concentrated mechanical, thermal, and laser deformation is established. This indicates the possibility of different plastic deformation mechanisms under the mentioned kinds of effects Bending of the crystallographic planes because of deformation of the crystal surface by the laser beam is detected. The volume distribution of dislocations and their behavior at different temperatures are studied.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 26–30, April, 1976.  相似文献   

7.
The effect of irradiation on the dislocation structure of epitaxial GaN films, grown by the lateral-overgrowth method, is studied using the electron-beam-induced current mode in a scanning electron microscope. Low-energy electron-beam irradiation is found to lead to the gliding basal-plane dislocations even at very low excitation levels. Changes in the relative contrast of two segments of adjacent basal-plane dislocations may also indicate dislocation movement in the prismatic planes.  相似文献   

8.
The method of etching dislocations is used to study the distribution of dislocations and twins in Fe-3% Si alloy single crystals prepared from the melt after plastic deformation with higher speed. The crystals are deformed by twinning in the 〈111〉 directions along the {112} planes and by slip in the 〈111〉 directions along the {110} planes. The results prove that the dislocations causing plastic deformation move in the {110} planes during both fast and slow deformation. The difference in the slip surfaces during fast and slow deformation is explained by the different number of cross slips per unit dislocation path.  相似文献   

9.
A new computer simulation method employed in discrete dislocation dynamics is presented. The article summarizes results of an application of the method to elementary interactions among glide dislocations and dipolar dislocation loops. The glide dislocations are represented by parametrically described curves moving in glide planes whereas the dipolar loops are treated as rigid objects. All mutual force interactions are considered in the models. As a consequence, the computational complexity rapidly increases with the number of objects considered. This difficulty is treated by advanced computational techniques such as suitable accurate numerical methods and parallel implementation of the algorithms. Therefore the method is able to simulate particular phenomena of dislocation dynamics which occur in crystalline solids deformed by single slip: generation of glide dislocations from the Frank-Read source, interaction of glide dislocations with obstacles, their encounters in channels of the bands, sweeping of dipolar loops by glide dislocations and a loop clustering.  相似文献   

10.
Abstract

Microstructural analysis of the defect aggregates formed in bulk samples of polycrystalline β-Si3N4 neutron-irradiated to a dose of ~2.0 × 1026n/m2 at temperatures of 1100 K and 925 K has been carried out. This study has shown that the defect aggregates formed are faulted dislocation loops lying on the {1010} planes with a Burgers vector of b ? 1 /10<1125>. The vector is non-rational but corresponds to the insertion of an extra layer of [SiN4] tetrahedra on the {10l0} planes plus an additional shear in the loop plane. The formation of these loops is dependent upon the temperature of irradiation. In the sample irradiated at 1100 K their formation is additionally dependent upon whether or not a particular grain contains pre-existing c-axis dislocations. If no c-axis dislocations are present then independent nucleation of the loops is apparent; if there are pre-existing c-axis dislocations then the loops form from an apparent dissociation between the arcs of the irradiation-induced helical c-axis dislocation. In the sample irradiated at 925 K only independent nucleation of the loops occurs, regardless of whether or not there are any pre-existing c-axis dislocations in the grains.  相似文献   

11.

Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during high-speed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible for the generation of vacancies are investigated. The main process is found to be incomplete annihilation of segments of edge dislocations on adjacent slip planes. The dislocations are also seen to be participating in complicated dislocation reactions, where sessile dislocation segments are constantly formed and destroyed.  相似文献   

12.
The Peierls-Nabarro model originally developed for dislocations with planar cores is modified to describe the cores of screw dislocations extended along two or three intersecting slip planes, under the action of external stress. This concept generalizes the simplified concept of sessile splitting of screw dislocations into singular partials and enables an instructive interpretation of fully atomistic models of screw dislocation cores developed recently for b.c.c. metals. As an example, a numerical solution of the modified Peierls-Nabarro equation is given for the equilibrium configuration of a 1/2 [111] screw dislocation core in -Fe extended along three {110} planes.  相似文献   

13.
The distribution of dislocations at the ends of slip bands was studied by etching on surfaces parallel to the slip plane. In these places the slip band is formed by groups of asymmetric dislocation loops several hundred microns wide. The long mixed-type parts of these loops running nearly equidistantly and lying in near planes, are the equilibrium arrangement of dislocations of the same sign in the shear stress gradient. From the results we can judge that the dislocation sources are at larger distances from the ends of the slip bands and that the dislocation groups at the ends of the slip bands are sources of large stress fields.  相似文献   

14.
The acoustic emission method is employed for an experimental investigation of the effect of a magnetic field on the mobility of edge dislocations in a plastically deformed n-silicon sample carrying a current. It is found that the preliminary treatment of a dislocated crystal in a constant magnetic field (B<1 T) changes the intensity of its acoustic response depending on the magnetic induction. The observed effect is associated with spin-dependent magnetosensitive reactions of defects occurring in the vicinity of the dislocation core, which facilitate the detachment of the dislocations from the stoppers and, hence, increase the mobility of dislocations and the acoustic response of the dislocation structure.  相似文献   

15.
The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.  相似文献   

16.
The thermally activated movement of dislocations over a statistical distribution of obstacles in the slip planes is considered. The mean free length of the dislocation between obstacles is calculated as a function of stress, obstacle density, and line tension. The interpretation of measurements of an activation volume for dislocation motion is being discussed assuming different dislocation — obstacle interaction profiles.  相似文献   

17.
Two unlike dislocations gliding in parallel slip planes in a channel of a persistent slip band are considered. Initially they are kept apart in straight screw positions. As the dislocations are pushed by the applied stress between two walls in the opposite directions, they bow out and attract one another forming a dipole. With the increasing stress the dislocations become more and more curved, until they separate. The walls of the channel are represented by elastic fields of rigid edge dipoles. The dislocations are modelled as planar curves approximated by moving polygons. The objective of the simulations is to determine the stress in the channel needed for the dislocations to escape one another. The stress and strain controlled regimes considered provide upper and lower estimates of the escape stress. The results are compared with the studies by Mughrabi and Pschenitzka, and Brown and the recent dislocation dynamics estimates. Problems encountered in the dislocation dynamics evaluation of the escape stress are analyzed.  相似文献   

18.
Emmanuel Clouet 《哲学杂志》2013,93(19):1565-1584
We derive an expression of the core traction contribution to the dislocation elastic energy within linear anisotropic elasticity theory using the sextic formalism. With this contribution, the elastic energy is a state variable consistent with the work of the Peach–Koehler forces. This contribution needs also to be considered when extracting from atomic simulations core energies. The core energies thus obtained are real intrinsic dislocation properties: they do not depend on the presence and position of other defects. This is illustrated by calculating core energies of edge dislocation in bcc iron, where we show that dislocations gliding in {110} planes are more stable than those gliding in {112} planes.  相似文献   

19.
X. Han  N. M. Ghoniem 《哲学杂志》2013,93(11):1205-1225
Utilizing Fourier transforms, the elastic field of three-dimensional dislocation loops in anisotropic multilayer materials is developed. Green's functions and their derivatives, obtained first in the Fourier domain and then in the real domain by numerical inversion, are used in integrals to determine the elastic field of dislocation loops. The interaction forces between dislocations and free surfaces or interfaces in multilayer thin films are then investigated. The developed method is based on rigorous elasticity solutions for dislocations approaching to within one to two atomic planes from the interface. For a dislocation in one layer, the interface image force is determined mainly by the elastic moduli and thicknesses of neighbouring layers. When a dislocation approaches an interface between two layers, within 10–20 atomic planes, the image force changes rapidly. Interaction forces are then kept constant up to the interface. The model shows that, when a dislocation crosses an interface from a soft to a hard layer, additional external forces must be applied to overcome an elastic mismatch barrier. The developed method extends the concept of the Kohler barrier in 2D, and shows that the interface force barrier not only depends on the relative ratio of the elastic moduli of neighbouring layers, but also on the 3D shape of the dislocation, the number of interacting adjacent layers, and on layer thicknesses.  相似文献   

20.
Previous studies have revealed that dislocation structures in metals with medium-to-high stacking fault energy, depend on the grain orientation and therefore on the slip systems. In the present work, the dislocations in eight slip-plane-aligned geometrically necessary boundaries (GNBs) in three grains of near 45° ND rotated cube orientation in lightly rolled pure aluminium are characterized in great detail using transmission electron microscopy. Dislocations with all six Burgers vectors of the ½?1?1?0? type expected for fcc crystals were observed but dislocations from the four slip systems expected active dominate. The dislocations predicted inactive are primarily attributed to dislocation reactions in the boundary. Two main types of dislocation networks in the boundaries were identified: (1) a hexagonal network of the three dislocations in the slip plane with which the boundary was aligned; two of these come from the active slip systems, the third is attributed to dislocation reactions (2) a network of three dislocations from both of the active slip planes; two of these react to form Lomer locks. The results indicate a systematic boundary formation process for the GNBs. Redundant dislocations are not observed in significant densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号