首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用分子动力学方法模拟研究了不同温度下bcc-Fe中螺位错滑移行为和螺位错与1/2[11ˉ1]位错环相互作用机制.结果表明,螺位错在低温2 K剪切应力下主要沿(ˉ211)面滑移;随温度逐渐升高到823 K,它容易发生交滑移,该交滑移在(ˉ110)和(ˉ211)面之间交替进行,因此随温度升高,临界剪切应力逐渐降低.当螺位错滑移靠近位错环时,不同温度下螺位错与位错环相互作用机制不同:低温2 K时,螺位错与位错环之间存在斥力作用,当螺位错滑移靠近位错环过程中,螺位错发生交滑移,切应力比无位错环时有所降低;中温300 K和600 K时,螺位错与位错环间斥力对螺位错的滑移影响减弱,螺位错会滑移通过位错环并与之形成螺旋结构,阻碍螺位错继续滑移,切应力有所升高;高温823 K时,螺位错因热激活更易发生交滑移,位错环也会滑移,两者在整个剪切过程中不接触,剪切应力最低.  相似文献   

2.
求晶体位错自能的离散弹性方案   总被引:1,自引:1,他引:0       下载免费PDF全文
孙宗琦  朱仕学 《物理学报》1989,38(2):175-182
考虑到晶体的离散点阵结构,滑移只能在原子之间进行,因此位错中心永远没有原子,位错中心附近分摊到每个原子的离散弹性能量处处有限。在刚性位错假定下,直接应用位错弹性理论解析结果,求出了晶体直奇异位错等效内切半径及其随位错中心位置的周期变化。对于简单四方晶体中奇异螺型位错,一级近似与Peierls模型结果巧合。计算了fcc和bcc两种晶系中各种位错的自能和等效位错内切半径,并初步考虑了各向异性弹性效应。结果表明:位错滑移面不是几何平面,bcc螺型位错滑移面类似于蜂巢结构。指出了用这种离散弹性方法进一步估算各种次级效应的可能。 关键词:  相似文献   

3.
郭可信  张修睦 《物理学报》1966,22(3):257-269
本文研究了在电子显微镜的照明电子束作用下,铝镁合金中位错运动与交互作用的行为。螺型位错往往单个运动,并且很容易改变运动方向,产生多次双交叉滑移。滑移和交滑移首先在与膜面接近45°的{111}面上进行,位错的柏氏矢量为接近膜面的α/2<110>,这是与照明电子束所产生的应力与膜面平行一事相符的。运动着的位错可以通过其应变场激活近邻的位错,使之发生运动;亦可能受到其它位错的排斥作用而受阻或改变运动方向。  相似文献   

4.
在研究岩盐型晶体的塑性变形中,用偏振光方法观察晶体中在塑性变形时出现的双折射光带,并结合用显微干涉仪对晶体表面的研究,观察到晶体中发生滑移时滑移带两端所发生的滑移距离恆不相等。根据这一结果,用腐蚀方法观察晶体中的位错排列,并和双折射光带及表面干涉图形的研究对比,全面地验证了离子型晶体中滑移过程的位错机构。此外,还证明了腐蚀坑和位错之间的一一对应的关系,并用实验方法证明了晶体滑移面内存在着符号不同的位错。  相似文献   

5.
洪晶  叶以正 《物理学报》1965,21(8):1475-1486
本文用化学侵蚀法研究了硅单晶样品在800—1000℃印压得到的位错“花结”。实验结果说明:印压产生的位错分布在{111}滑移面上;位错线的取向大部分是<110>或<112>方向。分析并观察到在压印下有两种位错环,一种是柏格斯矢量沿<110>方向并平行于(111)印压面;一种是柏格斯矢量沿<110>方向并与印压面相交。对位错环的结构进行了分析。  相似文献   

6.
郭可信  林保军 《物理学报》1980,29(4):494-499
对镍铬合金(20%Cr,1%Al,2.5%Ti)中层错边界处及共格孪晶界面上的不全位错进行了观察和分析,结果是:1.用g·bp=±2/3或±1/3作为不全位错是否显示衍衬是可行的,但不够严格。为此,应尽量选择{220}或{311}类型衍射成像,这时g·bp或者等于零,或者等于整数,比较容易确定不全位错的柏氏矢量。2.共格孪晶界面上有不全位错,大多数是全位错分解的产物,成对出现。3.平行滑移面上的层错在运动中可以相互重迭。重迭层错中内禀层错与外禀层错之间的不全位错,在g·bp=±2/3时无衍衬(在层错条纹的较强背景下是亮线),而在g·bp=±1/3时显示衍衬(暗线)。 关键词:  相似文献   

7.
孙宗琦  韩明辉 《物理学报》1989,38(2):183-192
在离散弹性模型中考虑了位错中心位错密度分布的影响,计算了fcc和bcc两种各向同性弹性介质中,不同中心结构的螺型位错的自能、等效内截半径与位错中心位置的关系,估算了不同滑移面上P-N力。讨论了原子热振动对P-N力的影响,比较了离散弹性方法与现有其它方法的结果,据信离散弹性方法是一种进一步进行更深入计算的有效方案。 关键词:  相似文献   

8.
崔丽娟  高进  杜玉峰  张高伟  张磊  龙毅  杨善武  詹倩  万发荣 《物理学报》2016,65(6):66102-066102
钒合金作为聚变堆候选材料, 其辐照损伤行为一直是关注的重点. 研究辐照时形成的位错环的性质, 其意义在于揭示纯钒中辐照空洞的长大机理. 这种机理表现为不同类型位错环对点缺陷吸收的偏压不同, 从而影响金属的辐照肿胀. 本文利用加速器对纯钒薄膜样品进行氢离子辐照, 然后, 利用透射电镜的inside-outside方法分析氢离子辐照所形成的位错环的类型. 结果表明, 在氢离子辐照纯钒中没有发现柏氏矢量b=<110>的位错环, 只有柏氏矢量b=1/2<111>和b=<110>的位错环, 这两种位错环的惯性面处于{110}-{112}之间. 能确定性质的位错环全部为间隙型位错环, 未发现空位型位错环.  相似文献   

9.
龙期威  熊良钺 《物理学报》1984,33(6):755-761
本文改进BCS型裂纹位错模型,并对裂纹顶端范性区的位错密度分布进行了计算。结果指出,在紧靠裂纹顶端的滑移面上出现和裂纹位错异号的位错。这些负号位错将移至裂纹顶端并使之钝化而留下一个无位错区或低位错密度区。本文对无位错区形成的象力理论进行了讨论。 关键词:  相似文献   

10.
对存在倾斜透镜时两个刃型位错的相互作用进行了研究.研究表明, 两个离轴刃型位错在一定条件下由于相互作用会消失, 并有一个或两个非正则光涡旋产生, 一个共轴刃型位错和一个离轴刃型位错相互作用时产生一个非正则光涡旋. 当初始场中两个刃型位错相互垂直或者平行时, 出射场中会有一个或者两个刃型位错出现. 改变透镜的倾斜因子不影响出射场中位相奇点的类型和数量, 但位相奇点的横向位置与倾斜因子有线性关系. 两个刃型位错相互作用产生的光涡旋对的三维轨迹是非线性的, 但光涡旋对的中心沿直线传输. 关键词: 位相奇点 刃型位错 非正则光涡旋 倾斜透镜  相似文献   

11.
A calculation is made of the strength of combinations of superlattices of a primary glide system consisting of two or three partial superdislocations and a single dislocation of the secondary glide system. Estimates are made of the contributions of dislocation combinations to the yield stress of alloys in which glide is effected by dislocations with different structures in different glide systems. The critical dislocation density at which plane sources are activated is determined.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 81–86, July, 1978.  相似文献   

12.
To study the nanoscopic interaction between edge dislocations and a phase boundary within a two-phase microstructure the effect of the phase contrast on the internal stress field due to the dislocations needs to be taken into account. For this purpose a 2D semi-discrete model is proposed in this paper. It consists of two distinct phases, each with its specific material properties, separated by a fully coherent and non-damaging phase boundary. Each phase is modelled as a continuum enriched with a Peierls–Nabarro (PN) dislocation region, confining dislocation motion to a discrete plane, the glide plane. In this paper, a single glide plane perpendicular to and continuous across the phase boundary is considered. Along the glide plane bulk induced shear tractions are balanced by glide plane shear tractions based on the classical PN model. The model's ability to capture dislocation obstruction at phase boundaries, dislocation pile-ups and dislocation transmission is studied. Results show that the phase contrast in material properties (e.g. elastic stiffness, glide plane properties) alone creates a barrier to the motion of dislocations from a soft to a hard phase. The proposed model accounts for the interplay between dislocations, external boundaries and phase boundary and thus represents a suitable tool for studying edge dislocation–phase boundary interaction in two-phase microstructures.  相似文献   

13.
A new computer simulation method employed in discrete dislocation dynamics is presented. The article summarizes results of an application of the method to elementary interactions among glide dislocations and dipolar dislocation loops. The glide dislocations are represented by parametrically described curves moving in glide planes whereas the dipolar loops are treated as rigid objects. All mutual force interactions are considered in the models. As a consequence, the computational complexity rapidly increases with the number of objects considered. This difficulty is treated by advanced computational techniques such as suitable accurate numerical methods and parallel implementation of the algorithms. Therefore the method is able to simulate particular phenomena of dislocation dynamics which occur in crystalline solids deformed by single slip: generation of glide dislocations from the Frank-Read source, interaction of glide dislocations with obstacles, their encounters in channels of the bands, sweeping of dipolar loops by glide dislocations and a loop clustering.  相似文献   

14.
A new type of misfit dislocation multiplication is deduced from high-voltage electron micrographs of thin Ge layers on GaAs substrates. Two misfit dislocations with the same Burgers vectors on different glide planes cross and annihilate at the intersection point resulting in the formation of two angular dislocations. The tip of one of these dislocations may reach the growth surface by glide breaking into two separate dislocation segments. These segments may glide to form additional misfit dislocations, which may undergo the same multiplication process.  相似文献   

15.
The elastic interaction between two parallel dislocations which can glide in non-parallel slip planes is studied under the simplifying assumption that the dislocation glide velocity is proportional to stress. The motion of the two dislocations is represented by a motion of one reference point in a configuration plane. It is concluded that the contribution of the long-range elastic interaction between individual dislocations from different slip systems to work hardening is negligible, compared to the contribution from the formed attractive junctions. Especially, two parallel edge dislocations with mutually perpendicular Burgers vectors can co-exist in minimum energy positions, however, they can be separated by an arbitrarily small external stress.  相似文献   

16.
In fcc crystals, dislocations are dissociated into partial dislocations and, therefore, restricted to move on {111} glide planes. By junction reactions with dislocations on two intersecting {111} planes, Lomer–Cottrell dislocations along ?110? directions can be formed which are barriers for approaching screw dislocations. Treating the interaction between a dissociated screw dislocation and a LC lock conventionally, using classical continuum theory and assuming the partials to be Volterra dislocations, leads to erroneous conclusions. A realistic result can only be obtained in the framework of the Peierls model, treating the partials as Peierls dislocations and explicitly taking account of the change in atomic misfit energy in the glide plane. At even moderate stresses (at less than 3 × 10?3 µ in Cu), the screw will combine with the LC lock to form a Hirth lock. As a result, the nature of the repulsive force will change drastically.  相似文献   

17.
We have performed a transmission electron microscopy study, using weak beam imaging, of the interface dislocation arrays that form initially at the (001) Ni–Cu interface during coherency loss. Interface dislocations were absent in the 2.5?nm Ni/100?nm Cu bilayers, but were present in the 3.0?nm Ni samples, indicating that the critical Ni film thickness for coherency loss is between 2.5 and 3?nm. The key features of the interface dislocation structure at the onset of coherency loss are: (i) the majority of interface dislocations are 60° dislocations, presumably formed by glide of threading dislocations in the coherently stressed Ni layer, and have Burgers vector in the {111} glide plane; (ii) the interface contained approximately 5% Lomer edge dislocations, with Burgers vector in the {001} interface plane, and an occasional Shockley partial dislocation and (iii) isolated segments of interface dislocations terminating at the surface are regularly observed. Possible mechanisms that lead to these dislocation configurations at the interface are discussed. This experimental study shows that near the critical thickness, accumulation of interface dislocations occurs in a somewhat stochastic fashion with favourable regions where coherency is first lost.  相似文献   

18.
The different reactions between edge or screw dislocations and interstitial Frank loops were studied by means of molecular dynamics simulations. The calculations were performed at 600?K using an embedded atom method (EAM) potential describing a model FCC material with a low stacking fault energy. An interaction matrix that provides the corresponding interaction strength was determined. In an attempt to investigate the role of pile-ups, simulations with either one or two dislocations in the cell were performed. We find that screw and edge dislocations behave very differently. Edge dislocations shear Frank loops in two out of three cases, while screw dislocations systematically unfault Frank loops by mechanisms that involve cross-slip. After unfaulting, they are strongly pinned by the formation of extended helical turns. The simulations show an original unpinning effect that leads to clear band broadening. This process involves the junction of two screw dislocations around a helical turn (arm-exchange) and the transfer of a dislocation from its initial glide plane to an upper glide plane (elevator effect).  相似文献   

19.
The energy of a shear dislocation ring is calculated in the framework of the Peierls model in which the displacement is represented by a density of infinitesimal dislocations in the glide plane. This avoids the introduction of an uncertain core cut-off radiusr 0 to prevent divergence in the usual treatment. The atomic misfit energy in the glide plane is accounted for explicitly and the influence of the interplanar potential on the ring energy and the core structure is studied. Whereas spontaneous formation of shear rings in a homogenous stress field can be ruled out, the emission of dislocation rings from crack tips in glide planes not containing the crack front is feasible.The paper is dedicated to Dr. Frantiek Kroupa in honour of his 70th birthday.Stimulating discussions with miss Petra Fiala are gratefully acknowledged.  相似文献   

20.
The formation of small angle boundaries consisting of dislocation networks is considered mainly on the basis of studies concerning the hot-deformation of Al-Mg alloys solidified with well developed sub-structures. It is shown that different kinds of network are built up on dislocation forests by dislocations which encounter the forest by glide and then change the mode of motion from glide to climb. Special attention is given to the mechanism of climb which enables the rapid knitting of networks during hot-deformation, and also to the annihilation of dislocations which prevents the increase in flow stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号