首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
实验动态应变分析中的模态分析方法   总被引:5,自引:1,他引:4  
近年来,振动结构模态分析方法广为普及,但多用于分析振动位移.关于在应力应变分析中如何应用模态分析技术问题,也开始成为工程师们关心的课题.运用应变模态分析法可通过实验直接建立应变(应力)响应的计算模型,这将使结构的  相似文献   

2.
汽车零部件动态应变场的模态分析   总被引:2,自引:0,他引:2  
本文根据应变模态分析原理,针对微型汽车驱动桥桥壳,通过应变模态试验,建立了结构的动态应变场模型并分析其动态应变响应特性.  相似文献   

3.
本文根据应变模态分析原理,针对微型汽车驱动桥桥壳,通过应变模态试验,建立了结构的动态应变场模型并分析其动态应变响应特性.  相似文献   

4.
李雪艳  张惠民 《力学学报》2017,49(5):1081-1090
基于振动参数的结构损伤识别,是近年来土木工程的热点研究课题,振动参数包括频率、振型、频响函数、模态应变能、应变响应和加速度响应等,当结构损伤时,损伤位置附近将产生应力重分布,从而引起应变的变化,因此对比损伤前后的应变或者应变响应参数,可以用来识别结构损伤.提出了一种应变脉冲响应协方差参数,它是应变脉冲响应在时间区间上的能量积分;推导并证明了该参数是结构模态参数(频率,位移模态,应变模态,阻尼等)的函数,可用来表征结构状态.相比于传统的模态参数识别方法,可以保留更高阶的模态参数,而且避免了模态识别可能引起的误差;基于简支钢梁的多种损伤工况,研究和展示了该参数的特性,通过数值模拟发现,该参数能简单直观地判定损伤发生和识别损伤位置,无需建立结构分析模型,只需比较结构损伤前后的应变脉冲响应协方差参数即可;该参数简便易算,具有较好的抗噪性能,对结构损伤敏感,而且对结构刚度减少呈现一致变化特性,所以适合实际工程结构的健康监测和损伤识别.  相似文献   

5.
航空发动机复合材料叶片振动疲劳特性研究   总被引:3,自引:0,他引:3  
杨强  邵闯  方可强 《实验力学》2014,29(3):361-367
针对发动机复合材料叶片开展了振动疲劳特性研究。首先通过模态测试获得叶片结构的振型图,确定叶片在振动中应力最大部位疲劳薄弱部位;其次采用振动台施加窄带随机激励载荷,并监测其疲劳薄弱部位的应变水平,获得了复合材料叶片的振动响应及疲劳特性。试验结果显示,叶片在350με应变水平下的振动疲劳寿命为5.46×106;复合材料叶片的固有频率随试验时间的增加而降低。上述结果可为复合材料叶片在发动机中的应用提供部分依据。  相似文献   

6.
基于LQG最优控制法的压电智能结构独立模态空间控制   总被引:1,自引:1,他引:0  
采用压电材料作为传感器和驱动器对智能结构振动主动控制进行研究,基于机电耦合的压电智能结构传感和驱动方程,将振动控制动力学方程变换到模态空间对方程进行解耦。通过计算结构最大应变,确定压电元件的最佳粘贴位置。考虑到系统过程噪声和量测噪声的影响,设计Kalman滤波器,采用基于线性二次型高斯(LQG)最优控制的独立模态空间控制方法对压电智能结构的振动进行控制。最后以压电智能悬臂梁为例进行控制仿真,验证了此方法的有效性。  相似文献   

7.
一种用于非线性振动系统的模态分析方法   总被引:3,自引:0,他引:3  
本文提出了一种用于非线性振动系统的模态分析方法,将求解非线性系统模态的问题化为求解非线性特征值、特征向量的问题,利用模态研究系统的响应,文中分析了非线性保守系统、非线性自治系统和非线性非自治系统的线性模态,导出了三个模态包含原理。  相似文献   

8.
在薄壁圆环振动特性基础上,研究了振动环式微机械陀螺的支撑梁对环的振动模态及自然频率的影响。对一种外支撑式环形微机械陀螺敏感结构进行了ANSYS模态仿真,得到工作振动模态的变形量。以薄壁环2节点变形模态函数为参考函数对仿真变形量用最小二乘法拟合,拟合误差在4.5%以内,各函数系数一致性误差小于1.5%。基于支撑梁对环结构的模态函数影响较小的条件,用能量法和速度积分法得到结构的应变能和动能函数,进一步得到具有支撑梁环结构自然频率的近似解。选取4组支撑梁尺寸,其近似解与仿真结果的相对误差在±3%以内。  相似文献   

9.
根据增量热场理论,温度变化影响下索梁结构会形成新的热应力平衡状态.因此基于已有的索梁结构非线性动力学模型,结合与斜拉索张拉力和垂度相关的无量纲参数,重新建立考虑温度变化影响下索梁结构面内振动的动力学模型,并推导其面内非线性运动方程.接着开展特征值分析,得到包含温度效应的索梁结构面内振动频率的超越方程及模态振型函数.通过算例研究温度变化对不同刚度比的索梁结构影响,得到其前四阶面内振动的模态频率与温度变化的关系曲线.研究结果表明:面内模态频率受温度变化影响明显,其影响程度与刚度比大小和模态的阶数密切相关,温度变化对低阶模态频率的影响比对高阶模态频率影响更为复杂;升温和降温对索梁结构面内振动特性的影响不对称;此外温度变化会导致频率偏转点的位置发生漂移.  相似文献   

10.
论文旨在分析功能梯度锥-柱连接壳的环向自由振动,以提高其结构的振动性能和稳定性.采用Voigt模型和四参数幂函数体积分数描述功能梯度材料属性,基于Donnell薄壳理论推导出锥壳和柱壳的位移与应变关系,分别得出锥壳和柱壳的能量表达式.引入人工弹簧模拟边界和壳体间的连接条件,依据Chebyshev多项式构造位移函数,基于Rayleigh-Ritz法求解FGMs锥-柱连接壳模态频率,分析梯度指数、边界条件和几何参数对模态频率的影响.结果表明:增加陶瓷体积分数能有效提高结构的模态频率,而增大梯度指数则会降低结构的模态频率;边界约束条件越强,FGMs锥-柱连接壳的模态频率越高;随着环向波数的增大,边界条件对结构模态频率的影响越来越弱,边界约束效果作用于圆柱壳明显强于圆锥壳;当环向波数大于3时,随着壳体厚度增大,结构的模态频率呈线性提高,而增大锥柱壳长度比会降低结构模态频率;在锥柱壳长度比一定时,随着锥角的增大会使结构的模态频率先增加到峰值后减小.  相似文献   

11.
In structural modal analysis and modal testing, an important but difficult task is to match the identified natural frequencies and the corresponding modal deflections. This process is called the modal recognition in this paper. There were some treatments towards this problem for the lumped parameter structural models. For the distributed parameter models, however, little research has been reported on the modal recognition problem. In this paper, a strain-energy criterion for modal recognition has been developed. As an example, a distributed parameter model for a two-beam structural system has been formulated, which is expected to simulate the dynamics of a two-arm manipulating system fixed on a shuttle. Transfer matrix method has been used to set up the dynamic equation of the system. The natural frequencies are obtained from the solution of the characteristics equation. Consequently, the mode shape functions are found out analytically.

Strain energy can be viewed as a measure of the structural deformation. When performing modal analysis, we always assume that the structural system is vibrating at a particular natural frequency. The strain energy is, therefore, stored in the deflection caused by such a harmonic motion. The vibration at a particular natural frequency will not produce any strain energy in the other modal components. On the other hand, if a particular mode shape is contributed mostly by the deformation of a specific component of the global structural system, then the great percentage of the total strain energy will be stored in the deformation of that component. Based upon the calculation of the strain energy in the structural components we can find out which component is deformed most and in what motion it is deformed, thereby, the mode shape can be detected. The computer simulation demonstrated that the strain energy indicated an essentially perfect recognition of the identified natural frequencies with the corresponding mode shapes. The creation of the strain-energy criterion consummates the procedure of the distributed parameter modeling, modal identification and parameter estimation.  相似文献   


12.
Numerical method in dynamic response of nonlinear systems   总被引:1,自引:0,他引:1  
A kind of modal synthesis techniques, which is applicable to vibration analysis for linear substructures with nonlinear coupling attachments, has been extended to nonlinear dynamic analysis of large complex structural systems[9]. In this paper, a process is suggested to dynamic analysis of large complex structural systems with nonlinear characteristics of each substructure. At the end of this paper, an example shows the defendable accuracy of the results and high efficiency of this process.This paper was collected in Proceedings of Symposium on Nonlinear Mechanics, Vol. IV, 1982, Wuxi, China (in Chinese).  相似文献   

13.
对27m2大型直线振动筛的相似试验模型进行了动应力测试,得到了试验模型筛筛体梁、板关键点处的最大动应力应变值。根据量纲分析法和方程分析法推导的工作状态参数相似关系,通过对原型筛与缩小的相似试验模型筛的试验结果对比分析,验证了相似模型与原型试验数据的一致性及可靠性,证实了利用缩小的相似试验模型进行动态测试及分析的有效性。本文结果为提高直线振动筛的使用寿命及结构的优化设计提供了理论依据,也为相似试验模型的发展研究提供了参考。  相似文献   

14.
Model updating and validation is currently a central issue in the fields of computational structural mechanics and dynamics. The vast majority of applications however concerns linear structures. On the other hand, updating nonlinear models is something the structural dynamicist prefers to avoid mainly because tools such as modal analysis are no longer available. The objective of the present study is to propose a two-step methodology for dealing with nonlinear systems. Its most appealing feature is that it decouples the estimation of the linear and nonlinear parameters. A numerical application consisting of an aeroplane-like structure is used to assess the efficiency of the procedure.  相似文献   

15.
Based on the generalized mode theory of linear vibrating defective systems, an identification method of generalized modal parameters is presented in this paper. By the use of this method, which combines the direct method with the iteration method in frequency domain, all the generalized modal parameters can be identified without any initial value. It is shown that the present method is effective and useful.  相似文献   

16.
线性振动亏损系统广义模态参数的识别方法   总被引:2,自引:0,他引:2  
基于线性振动亏损系统的广义模态理论,本文提出了一种识别亏损系统广义模态参数的频域方法。该方法将直接法与迭代法相结合,无需人工初值,可分步识别出亏损系统的全部广义模态参数。模拟识别结果表明,本文方法是有效且可行的。  相似文献   

17.
Different kinds of modal synthesis method have been used widely in dynamic analysis of linear structure systems, but, in general, they are not suitable for nonlinear systems.In this paper, a kind of modal synthesis techniques is extended to dynamic analysis of nonlinear systems. The procedure is based upon the method suggested in [20],[21], which is applicable to vibration analysis for complex structure systems with coupling attachments but with simplified forms of linear springs and dampers. In fact, these attachments have nonlinear characteristics as those generally known to the cases of nonlinear elasticity and nonlinear damping, e.g., piecewise-linear springs, softening or hardening springs. Coulomb damping,elas-ioplastic hysteresis damping, etc. So long as the components of structure are still linear systems, we can get a set of independent free-interface normal mode information hut only keep the lower-order for each component. This can be done by computations or experiments or both. The global equations of linear vibration are set up by assembling of the component equations of motion with nonlinear coupling forces of attachments. Then the problem is reduced to less degrees of freedom for solving nonlinear equations. Thus considerable saving in computer storage and execution time can be expected. In the case of a very high-order system, if sufficient degrees of freedom are reduced, then it may be possible for the problem to be solved by the aid of a computer of ordinary grade.As the general nonlinear vibration of multiple degrees of freedom systems is quite involved, in general, the exact solution of a nonlinear system equations is not easy to find, so the numerical method can be adopted for solving the reduced nonlinear equations to obtain the transient response of system for arbitrary excitations.  相似文献   

18.
Lee  Y. Y.  Ng  C. F.  Guo  Xinyun 《Nonlinear dynamics》2003,31(3):327-345
This paper investigates large amplitude multi-mode free vibration andrandom response of thin cylindrical panels of rectangular planform usinga finite element modal formulation. A thin laminated composite doublycurved element is developed. The system equation in structural nodal DOFis transformed into the modal coordinates by the using the modes of theunderlying linear system. The nonlinear stiffness matrices are alsotransformed into nonlinear modal stiffness matrices. Numericalintegration is employed to determine free vibration and random response.Single-mode free vibration results are compared with existing classicalanalytical solutions to validate the nonlinear modal formulation.Nonlinear random analysis results for cylindrical panels have shown thatthe root mean square of panel deflections could be larger than thoseobtained using the linear structure theory. Time histories, probabilitydistribution functions, power spectral densities, and phase plane plotsare also presented.  相似文献   

19.
大型转子-基础-地基系统的非线性动力分析   总被引:1,自引:0,他引:1  
针对实际工程中的大型机组,在线性理论分析基础上,引入转子系统的非线性油膜力项,采用子结构模态综合法,形成一个比较接近实际大型汽轮发电机组的包括陀螺转子-非稳态非线性油膜转承-弹性基础-地基系统的非线性系统计算模型。通过对系统方程进行分块直接积分求解,得到了不同位置的轴承在不同转速和不同转子偏心量下引起的系统非线性动力学现象,为大机组的非线性分析和改进提供较完善的理论分析和计算的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号