首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
由于具有低成本、高安全性、组装简易方便等优点,水性可充电锌离子二次电池被认为是太阳能和风能的最佳储能装置,尤其是锌锰二次电池.目前,锰正极材料的研究较多集中在二氧化锰上,同时,也有关于Mn2O3的研究,但比容量及能量密度皆较低.本文合成了方铁锰矿Mn2O3并将其用于水性锌离子电池的正极材料,在0.2C倍率下充放时,获得...  相似文献   

2.
中性/弱酸性水系锌锰电池因其能量密度高、价格低廉、环境友好等优势受到广泛关注。然而,现有的二氧化锰正极材料存在导电性能差,在充放电过程中易于溶解等问题。这严重影响了电池的倍率性能和循环稳定性,阻碍了中性锌锰电池的应用。为了解决上述问题,本文设计了以碳纳米管(CNT)网络薄膜为导电基底沉积聚吡咯(PPy)包覆二氧化锰(PPy@MnO2/CNT)的多级结构电极。碳纳米管和聚吡咯组装形成高比表面积的三维交联导电网络,为活性材料提供了快速的电子、离子传输通道;聚吡咯包覆纳米级二氧化锰能够有效地抑制二氧化锰的溶解,进而提升电池的倍率特性和循环稳定性。以PPy@MnO2/CNT作为正极材料组装的水系锌锰电池在1 A·g-1的电流密度下,比容量达到210 mAh·g-1,循环1000圈后,电池依然具有较高的容量保持率(85.7%)。本工作的导电聚合物包覆活性物质的策略可为发展高稳定柔性储能器件提供新思路。  相似文献   

3.
水系储能器件具有固有的高安全性、环境友好性和成本低的优势,在未来智能电网、便携式/可穿戴电子产品等领域显示出巨大的应用潜力。然而水的热力学分解电压低、冰点高,导致水系电解液电化学稳定电压窗口窄以及凝固点高,极大地限制了水系储能器件的能量密度与宽温域应用。因此,设计耐高电压、抗冻的水系电解液,成为水系储能器件大规模、多场景应用的关键。本文系统综述了高电压/宽温域水系碱金属离子电池电解液设计的研究进展,从热力学和动力学角度出发,分别重点介绍提高电解液电压窗口和工作温度范围的各类策略以及相关作用机制。进一步提出宽温域、高压水系电解液的潜在设计思路,并对高性能水系碱金属离子电池的发展方向进行展望。  相似文献   

4.
水系锌离子电池(aqueous zinc-ion batteries,AZIBs)具有高安全性、低生产成本、锌资源丰富和环境友好等优点,被认为是未来大规模储能系统中极具发展前景的储能装置。目前,AZIBs的研究关键之一在于开发具有稳定结构和高容量的锌离子可脱嵌正极材料。钒基化合物用作AZIBs正极时,表现出可逆容量高和结构丰富可变等特点,受到了广泛的关注和研究。然而,钒基化合物的储锌机理较复杂,不同材料通常表现出各异的电化学性能和储能机理。在本综述中,我们全面地阐述了钒基化合物的储能机制,并探讨了钒基材料在水系锌离子电池中的应用和发展近况,以及它们的性能优化策略。在此基础上,也进一步地展望了水系锌离子电池及其钒基正极材料的发展方向。  相似文献   

5.
锌具有原料丰富、质量轻便、金属导电性与延展性好以及理论比容量高等优势,可以作为绿色可充电电池的理想电极材料。其中,以中性或弱酸性水溶液为电解质、锌为负极的锌基水系电池具有安全性高、电池材料廉价无毒、制备工艺简单、环境友好等特点,在储能和动力电池领域具有极高的应用价值和发展前景。但电池充放电过程中伴随的锌枝晶、析氢、腐蚀、钝化等问题限制了其实际应用。本文综述了锌基水系电池负极存在的问题及当前的解决策略,并对其负极研究发展方向进行了展望。  相似文献   

6.
高安全、低成本、长寿命的大规模储能新技术的突破事关未来能源结构调整以及智能电网建设。可充锌电池由于其安全性高、环境友好、成本低等优势而成为将来储能系统的重要选择。然而,常规水系电解液的应用通常导致正极活性物质溶解、水溶剂分解、锌负极腐蚀、枝晶等问题。因此,本文对水系电解质(液)体系导致的问题及相应的调控方案进行了讨论与总结。主要从电解质(液)改性角度分析了通过调控组成成分、浓度、添加剂等变量以达到改变自由水含量和锌离子溶剂化结构的目的。另外,对可充电锌电池这一新兴技术实现应用所面临的挑战进行了总结与展望。  相似文献   

7.
王福慧  刘辉彪 《无机化学学报》2019,35(11):1999-2012
锌离子二次电池具有优异的充放电性能、高功率密度和能量密度、低成本、高安全性和环境友好的特点,极具发展前景。金属锌,因优异的导电性、低的平衡电势、高的理论比容量和低成本等因素,是水系二次电池中理想的负极材料,然而也存在着枝晶生长、腐蚀和钝化等问题,限制了锌离子二次电池的可逆容量和循环寿命,通过优化调节锌负极的形貌与表面修饰等方法可以提高电池性能。本文综述了水系锌离子二次电池负极材料的研究进展,涵盖了金属锌负极、复合锌负极和锌合金,且展望了锌负极的发展前景。  相似文献   

8.
水系锌金属电池由于其安全性高、低成本等优点,在电化学储能领域内具有广阔的前景。然而,锌负极在沉积/剥离过程中的副反应阻碍了实际应用。本实验通过简单的热处理调控锌金属的结晶学取向,探究了晶面取向对于电化学性质的影响。本实验将晶体化学与电化学相结合,从前沿研究出发设计综合实验,激发学生对科研的兴趣。  相似文献   

9.
由于高安全的特性,水系二次电池被认为是未来大型储能的有效解决方案之一. 然而,现有水系电池主要以含金属元素的无机化合物为电极活性材料,其在大型储能中的实际应用仍受到循环寿命、环境问题、原料成本或金属元素丰度的限制. 相较于无机电极材料,部分有机电极材料具有原料丰富、结构丰富、可持续及环境友好等优点. 此外,有机物材料分子内空间大,能够存储不同价态电荷,因此近年来被广泛关注. 本文综述了课题组近期在有机物电极方面的研究进展,内容聚焦含羰基有机物通过C=O/C-O-的可逆转化存储单价金属阳离子(Li+, Na+)、双价金属阳离子(Zn2+)、质子(H+)所涉及的电化学过程,及其在水系锂、钠离子电池、水系锌离子电池、质子电池以及分步电解水中的应用.  相似文献   

10.
黄俊达  朱宇辉  冯煜  韩叶虎  谷振一  刘日鑫  杨冬月  陈凯  张相禹  孙威  辛森  余彦  尉海军  张旭  于乐  王华  刘新华  付永柱  李国杰  吴兴隆  马灿良  王飞  陈龙  周光敏  吴思思  卢周广  李秀婷  刘继磊  高鹏  梁宵  常智  叶华林  李彦光  周亮  尤雅  王鹏飞  杨超  刘金平  孙美玲  毛明磊  陈浩  张山青  黄岗  余丁山  徐建铁  熊胜林  张进涛  王莹  任玉荣  杨春鹏  徐韵涵  陈亚楠  许运华  陈子峰  杲祥文  浦圣达  郭少华  李强  曹晓雨  明军  皮欣朋  梁超凡  伽龙  王俊雄  焦淑红  姚雨  晏成林  周栋  李宝华  彭新文  陈冲  唐永炳  张桥保  刘奇  任金粲  贺艳兵  郝晓鸽  郗凯  陈立宝  马建民 《物理化学学报》2022,38(12):2208008
能源的存储和利用是当今科学和技术发展中的重大课题之一,尤其是作为高效的电能/化学能转化装置的二次电池相关技术一直是科学家研究的热点领域。在此背景下,本文较为系统地介绍目前二次电池的重要研究进展,将从二次电池的发展历史引入,再到其相关的基础理论知识的介绍。随后较为详细地讨论当前不同体系的二次电池及相关应的关键材料的研究进展,涉及到锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、钙离子电池、铝离子电池、氟离子电池、氯离子电池、双离子电池、锂-硫(硒)电池、钠-硫(硒)电池、钾-硫(硒)电池、多价金属-硫基电池、锂-氧电池、钠-氧电池、钾-氧电池、多价金属-氧气电池、锂-溴(碘)电池、水系金属离子电池、光辅助电池、柔性电池、有机电池、金属-二氧化碳电池等。此外,也介绍了电池研究中常见的电极反应过程表征技术,包括冷冻电镜、透射电镜、同步辐射、原位谱学表征、磁性表征等。本文将有助于研究人员对二次电池进行全面系统的了解与把握,并为之后二次电池的研究提供很好的指导作用。  相似文献   

11.
Because of the advantages of high safety, environment-friendliness, affordability, and ease of processing, aqueous rechargeable zinc batteries (ARZBs) are promising candidates for next-generation large-scale energy storage systems. In recent years, various cathode materials based on vanadium/manganese/cobalt oxides, Prussian blue analogs, and organic compounds have been reported. Among them, manganese dioxide (MnO2) is widely used in ARZBs due to their outstanding advantages of low toxicity, eco-friendliness, and high capacity (616 mAh∙g−1 based on two-electron transfer). However, the diversity of the crystal structures of MnO2 and the unpredictability of the electrochemical reaction make it difficult to investigate the specific internal storage mechanism, which impedes further development of the optimal modification strategies. To date, the main recognized energy storage mechanisms are (de)intercalation and dissolution-deposition mechanisms. In the traditional (de)intercalation mechanism, the predominant issues related to MnO2 during the cycling process include Mn dissolution, irreversible phase transformation, structural collapse, and sluggish ion diffusion kinetics. On the other hand, the detailed reaction path for the dissolution-deposition mechanism, which was developed in recent years, remains controversial. In addition, the incomplete dissolution-deposition of MnO2 and the highly acidic environment inevitably leads to corrosion and hydrogen evolution of the zinc anode, as well as low Coulombic efficiency. Accordingly, optimization strategies for different reaction mechanisms have been proposed to make zinc-manganese batteries more competitive. For the (de)intercalation mechanism, modification of composite materials and nanostructure optimization strategies can be adopted to inhibit the dissolution of MnO2 and increase the number of highly active reaction sites, thus enhancing the electrochemical performance. Moreover, the guest pre-intercalation strategy can help optimize the crystal structure of MnO2, preventing the collapse of the internal structure during cycling. Besides, defect engineering and element doping strategies focus on regulating the distribution of the electronic structure for affecting the properties of MnO2, resulting in lowering the energy barrier of zinc insertion. For the dissolution-deposition mechanism, the introduction of a neutral acetate and a halide mediator can effectively facilitate the dissolution-deposition of MnO2. Meanwhile, metal element catalysis can accelerate the reaction kinetics of the MnO2 dissolution-deposition, so that high-rate performance can be achieved. Furthermore, the decoupling battery system can separate the cathodic and anodic electrolytes to restrain the hydrogen and oxygen evolution reactions and enhance the potential difference. The flow battery system can effectively eliminate the influence of concentration polarization and stabilize the ion concentration in the electrolytes, thus leading to a large capacity (> 100 mAh). Undoubtedly, MnO2 as a high-capacity, high-voltage cathode material has broad development prospects for ARZBs. Here, we systematically summarize the crystal structures and reaction mechanisms of MnO2. We also discuss the optimization strategies toward advanced MnO2 cathode materials for resolving the highlighted issues in zinc-manganese batteries, which are expected to provide research directions for the design and development of high-performance ARZBs.   相似文献   

12.
锂硫电池具有理论能量密度高、环境友好和成本低等优点,有望成为替代锂离子电池的新一代储能系统。然而,锂硫电池充放电产物的绝缘性、可溶性多硫化锂的穿梭效应、硫正极体积膨胀及锂枝晶的不可控生长,严重影响了锂硫电池的实际容量发挥和循环稳定性。为解决上述问题,采用有机硫化合物来替代单质硫作为正极材料是有前途的策略。调控有机硫化合物的硫链、碳链及其相互作用,可改变其电化学反应过程,提高离子/电子电导,抑制穿梭效应。有机硫化合物作为电解液添加剂,可调控硫正极的反应过程并保护金属锂负极,作为聚合物电解质的改性链段可加速锂离子传导。本综述对有机硫化合物在锂硫电池的正极、电解液添加剂和固态电解质中的应用研究进展进行详细的阐述。将有机硫化合物的结构、反应机理和电化学性质联系起来,为解决锂硫电池存在的问题提供见解。最后,提出高性能有机硫化合物的设计合成和机理研究思路,以期实现可实用化的锂硫电池。  相似文献   

13.
与其他的锂电池体系相比,锂-空气电池具有最高的理论比能量,被认为有潜力成为终极能量转换和储存装置。目前的锂-空气电池常常使用气体钢瓶提供纯氧气,而非空气中的氧气,这种电池设计极大降低了锂-空气电池的能量密度和实用性。然而,当空气作为锂-空气电池的氧气供给源时,二氧化碳作为杂质会引起严重的副反应,从而降低锂-空气电池的性能。要解决二氧化碳引起的副反应,理解其反应机制至关重要。本文综述了锂-空气电池中有关二氧化碳诱发的化学/电化学反应的研究进展; 总结了可缓解二氧化碳负面效应的有效策略。此外,对二氧化碳选透膜材料和分离技术用于锂-空气电池进行了展望。  相似文献   

14.
由于正交相五氧化二铌(T-Nb2O5)为ReO3型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb2O5纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb2O5纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。  相似文献   

15.
由于水分解在绿色能源领域的重要作用,能够在碱性介质中进行析氢(HER)和析氧(OER)反应的双功能电催化剂具有重要的应用价值。本文报道一种具有丰富缺陷的表面改性NiCo2O4纳米线(NWs),在碱性介质中作为一种高效的整体水裂解电催化剂。X射线光电子能谱(XPS)分析表明,Co2+/Co3+比值的增加是表面修饰NiCo2O4纳米线具有优异双功能电催化性能的重要原因。结果表明,在1.0 mol·L-1 KOH溶液中,通过有机配体主导的表面改性,优化后的NiCo2O4纳米线在电流密度达到10 mA·cm-2时的HER过电位仅为83 mV,OER过电位仅为280 mV。更重要的是,有机配体表面改性后的NiCo2O4纳米线表现出了出色的水分解性能,在2.1 V电压下达到了100 mA·cm-2的电流密度。目前的工作凸显了提高NiCo2O4 NWs尖晶石结构中Co2+含量对促进整体水裂解的重要性。  相似文献   

16.
S-scheme heterojunction is a major breakthrough in the field of photocatalysis. In this study, NiS2 and MoSe2 were prepared by a typical solvothermal method, and compounded by an in situ growth method to construct an S-scheme heterojunction. The obtained composite showed excellent performance in photocatalytic hydrogen evolution; the hydrogen production rate was approximately 7 mmol·h-1·g-1, which was 2.05 times and 2.44 times those of pure NiS2 and MoSe2, respectively. Through a series of characterizations, it was found that NiS2 and MoSe2 coupling can enhance the light absorption intensity, which is vital for the light reaction system. The efficiency of electron-hole pair separation is also among the important factors restricting photocatalytic reactions. Compared with pure NiS2 and MoSe2, NiS2/MoSe2 exhibited a higher photocurrent density, lower cathode current, and lower electrochemical impedance, which proves that the NiS2/MoSe2 complex can effectively promote photogenerated electron transfer. Simultaneously, the lower emission intensity of fluorescence indicated effective inhibition of electron-hole recombination in the NiS2/MoSe2 complex, which is favorable for the photocatalytic hydrogen evolution reaction. Further, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that MoSe2 is an amorphous sample surrounded by the NiS2 nanomicrosphere, which greatly increased the contact area between the two, thus increasing the active site of the reaction. Secondly, as a photosensitizer, Eosin Y (EY) effectively enhanced the absorption of light by the catalyst in the photoreaction system. Meanwhile, during sensitization, electrons were provided to the catalyst, which effectively improved the photocatalytic reaction efficiency. The establishment of S-scheme heterojunctions contributed to improving the redox capacity of the reaction system and was the most important link in the photocatalytic hydrogen reduction of aquatic products. It was also the main reason for the improvement of the hydrogen evolution effect in this study. The locations of the conduction band and valence band of NiS2 and MoSe2 were determined by Mott-Schottky plots and photon energy curves, and further proved the establishment of the S-scheme heterojunction. This work provides a new reference for studying the S-scheme heterojunction to effectively improve the photocatalytic hydrogen production efficiency.   相似文献   

17.
全固态电池因其高能量密度和高安全性而成为具有发展前景的下一代储能技术。开发具有高室温离子电导率、优异化学/电化学稳定性、良好正/负极兼容性的固态电解质是实现全固态电池实用化的关键。卤化物固态电解质因其优异的电化学窗口、高正极稳定性、可接受的室温锂离子电导率等优势,受到了广泛的关注。本文通过对近年来卤化物电解质的相关研究进行总结,综述了该类电解质的组成、结构、离子传导路径及制备方法,并分析了金属卤化物电解质的电导率、稳定性特点,归纳了近年来该电解质在全固态电池中具有代表性的应用,并基于以上总结和分析,指出了卤化物固态电解质的研究难点及发展方向。  相似文献   

18.
高镍三元正极材料LiNixMnyCo1-x-yO2 (x > 0.8)因其高能量密度而备受瞩目。在高镍三元正极材料中,Co不但有助于增强层状正极材料结构稳定性,而且能够提高正极材料导电性能,因此被认为是一种非常重要的元素。但是由于目前全球范围内钴矿资源紧缺,在一定程度上限制了含钴正极材料在新能源电动汽车领域的发展应用。基于此,本文将不同的过渡金属离子掺杂到高镍层状材料中形成无钴化正极材料,并进行高镍正极材料无钴化的可行性分析。通过实验对比发现,资源存储量丰富并且价格低廉的Zr在一定程度上可以取代Co元素,得到的正极材料LiNi0.85Mn0.1Zr0.05O2表现出良好的电化学性能,在0.2C倍率以及2.75–4.3 V的截止电压范围内,其放电比容量为179.9 mAh·g-1,80周容量保持率为96.52%。  相似文献   

19.
单质硫具有理论能量密度高(2600 Wh·kg-1)、放电比容量高(1672mAh·g-1)、成本低等优势,是锂硫电池的理想正极材料。然而,在充放电过程中硫正极迟缓的反应动力学显著地限制了锂硫电池的性能。金属单原子催化剂(SMACs)具有独特的电子结构、金属含量低、理论上100%的原子利用率、催化活性高等优势,其不仅有效地促进了不同中间相的转化反应,而且可为含硫物质提供丰富的锚定位点,从而显著优化硫正极氧化还原反应动力学、多硫化物的穿梭行为和锂硫电池电化学性能。本文以剖析金属单原子催化剂与硫正极间的相互作用为出发点,结合其催化效应表征技术,重点解析了不同类型单原子催化剂的构筑策略、活性调控及其优化硫正极氧化还原行为的机制,展望了金属单原子催化剂在锂硫电池领域面临的挑战和未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号