首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以丙烯酸为功能单体,二苯甲酰-L-酒石酸(L-DBTA)为模板分子,三羟甲基丙烷三丙烯酸酯(TMPTA)为交联剂,采用紫外光聚合方法合成了L-DBTA手性分子印迹聚合物.通过HPLC表征,表明合成的手性分子印迹聚合物对L-DBTA模板分子具有很好的识别性,L-DBTA的选择性比二苯甲酰-D-酒石酸(D-DBTA)高.通过Scatchard分析表明,L-DBTA手性分子印迹聚合物中只存在一类影响聚合物识别能力的结合位点.293.15K时,结合位点的平衡离解常数为0.064mmol/L,最大表现结合容量为6.4mg/g.MIPs结合热力学研究表明,印迹分子L-DBTA与分子印迹聚合物手性识别基团之间的识别机理可以用Langmuir等温吸附描述,结合热力学参数为△H=7.40 kJ/mol,△S=42.74 J/(mol·K),△G298=-5.34kJ/mol.L-DBTA与MIPs相互作用速率快,表观活化能为7.40 kJ/mol.  相似文献   

2.
磁性胰蛋白酶分子印迹聚合物的制备及性能评价   总被引:1,自引:0,他引:1  
以壳聚糖修饰的四氧化三铁为载体,利用壳聚糖表面的氨基与戊二醛结合,丙烯酰胺为功能单体和交联剂,胰蛋白酶为模板蛋白,制备了磁性胰蛋白酶分子印迹聚合物。通过静态平衡结合法研究了磁性分子印迹聚合物的吸附能力、选择性。结果表明,与磁性分子非印迹聚合物相比,磁性分子印迹聚合物对模板蛋白具有高选择性和高特异性吸附,最大吸附量为162.2mg·g-1;Scatchard分析表明,存在两类不同的吸附结合位点,其离解常数分别为96.5μg·mL-1(高结合位点)和2.41mg.mL-1(低结合位点)。  相似文献   

3.
以非诺贝特(FNB)为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用本体聚合方法合成了FNB分子印迹聚合物(MIP)。IR和SEM表征的结果显示:FNB分子印迹聚合物中存在与模板分子相互作用的特征基团,与空白聚合物(NIP)的表面形态显著不同,说明MIP存在与模板分子相互识别的结合位点。采用静态平衡结合方法和Scatchard模型评价了FNB分子印迹聚合物的结合特性和识别机理,并考察了其选择性吸附能力。结果表明,FNB分子印迹聚合物存在能量相异的两类特异性结合位点,对FNB具有高选择吸附特性,饱和吸附量为6.363mg/g。  相似文献   

4.
酚酞分子印迹聚合物的制备及特异吸附性能   总被引:1,自引:0,他引:1  
石慧丽  樊静  魏娅方 《应用化学》2009,26(8):971-975
以泻药酚酞为模板分子,4-乙烯基吡啶为功能单体制备了模板分子和功能单体不同比例的一系列酚酞分子印迹聚合物。利用扫描电镜对聚合物进行了表面形态分析,采用静态平衡实验法研究了聚合物对模板分子及其类似物的吸附行为和选择性识别能力。实验结果表明,所制备的分子印迹聚合物,吸附 3 h 后基本接近最大吸附量,其中模板分子、4-乙烯基吡啶和交联剂的摩尔比为 1∶6∶20的MIP2的印迹因子为 2.30,效果最佳。Scatchard 分析表明, 在所研究的浓度范围内,吸附过程存在两类结合位点,一类高亲和力结合位点的离解常数为Kd1= 0.63 mmol/L,最大表观结合量 Qmax1 = 25.4 umol/g,另一类低亲和力结合位点的离解常数为 Kd2 =3.5 mmol/L,最大表观结合量 Qmax2 = 61.9 umol/g,通过与酚酞类似物质在酚酞分子印迹聚合物上的吸附行为比较,表明对酚酞具有很好的选择性吸附。  相似文献   

5.
以二氧化硅修饰的四氧化三铁为载体,灭草隆为模板分子,采用表面印迹技术制备了核-壳结构的磁性灭草隆分子印迹聚合物(Fe3O4@SiO2-MIPs)。采用扫描电镜(SEM)和磁强计(VSM)对产物的结构进行了表征。通过静态平衡结合法研究了磁性分子印迹聚合物的吸附能力、选择性。结果表明,与磁性非分子印迹聚合物相比,磁性分子印迹聚合物对灭草隆具有高选择性和高特异性吸附,最大吸附量80μmol g-1;Scatchard分析表明,印迹聚合物存在两类不同的吸附结合位点,Langmuir模型可以很好拟合吸附等温线,其相关系数R2=0.9989。  相似文献   

6.
本体聚合法制备2-氯酚分子印迹聚合物及其性能评价   总被引:2,自引:0,他引:2  
采用本体聚合法,以2-氯酚为模板分子,4-乙烯吡啶为功能单体,三羟甲基丙烷三甲基丙烯酸酯为交联剂合成了一系列分子印迹聚合物,并通过选择性实验和静态吸附实验对聚合物的选择性及吸附性能进行评价.结果显示:当以甲苯作为致孔剂,功能单体与模板分子的摩尔比为2:1时,聚合物对模板分子的印迹因子为1.71,亲和位点总数Bmax为0.1137 mmol/g,具有最优的选择性和吸附能力.  相似文献   

7.
TNT分子印迹聚合物微球的合成与性能研究   总被引:1,自引:0,他引:1  
以三硝基甲苯(TNT)为模板分子,EDMA为交联剂,采用沉淀聚合法制备了TNT分子印迹微球.讨论了溶剂用量、模板分子用量、功能单体种类等对分子印迹微球的形貌及吸附性能的影响;利用紫外吸收光谱和BET表征了印迹聚合物微球的结合位点相互作用与印迹孔穴结构;通过平衡吸附和选择性吸附实验,研究了印迹聚合物微球的吸附性能和选择性识别性能.结果表明,以丙烯酰胺为功能单体制备的分子印迹聚合物为规则的球形,内部含有分子印迹孔穴,微球的粒径为1~2μm.印迹聚合物微球可在30 min内达到吸附平衡,在1 mmol/L的TNT乙醇溶液中,印迹聚合物微球的平衡吸附量为32.5 mmol/kg,对TNT分离系数为25.19,具有较好的特异性吸附能力,并可选择性识别TNT分子.  相似文献   

8.
以卡维地洛药物分子为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用紫外光引发聚合的分子印迹技术,成功制备出卡维地洛分子印迹聚合物。用热重分析、扫描电镜对聚合物进行了表征,通过Scatchard方程研究了印迹聚合物对模板分子的结合特性。结果表明,在所研究的浓度范围内,印迹聚合物存在一类等价的结合位点,并计算出印迹聚合物与模板分子的平衡离解常数为0.5642 mmol/L,最大表观吸附量为97.44μmol/g,为理论值的63.53%。对不同底物的结合实验表明,该聚合物对卡维地洛具有优良的吸附选择性。  相似文献   

9.
刘芃岩  刘磊  张丽  姜宁  刘占理  王云 《化学通报》2008,71(2):132-137
以环丙沙星(CIP)为模板分子,α-甲基丙烯酸(MAA)为功能单体,三甲基丙烯酸三羟甲基丙烷酯(TRIM)为交联剂,进行热聚合.通过对于功能单体和交联剂的用量对分子印迹聚合物吸附性能的影响的研究,得到最佳的聚合配比为n(CIP):n(MMA):n(TRJM)=1:6:16,并以此配比制得了对环丙沙星具有特异选择性吸附的分子印迹聚合物.通过静态平衡结合法研究了模板聚合物的结合动力学以及该聚合物的结合能力和选择特性,通过Scatchard分析法研究了印迹聚合物对模板分子的结合特性.结果表明,该印迹聚合物具有良好的吸附能力和吸附选择性,静态吸附分配系数KD为41.64,分离因子α为1.62;该印迹聚合物中形成了2类不同的结合位点,经计算它们的离解常数分别为Kd1=5.249×10-5mol·L-1,Kd2=2.237×10-3mol·L-1.  相似文献   

10.
以罗丹明B为模板分子,以钛酸丁酯为交联剂,采用溶胶-凝胶法在酸性条件下制备了罗丹明B二氧化钛溶胶-凝胶分子印迹聚合物;利用傅立叶变换红外光谱和透射电镜分析了分子印迹聚合物的结构,使用热重分析测定了其热稳定性,采用静态吸附和动态吸附方法考察了其吸附性能,并与非印迹聚合物进行了对比.结果表明,与非印迹聚合物相比,印迹聚合物具有网络状多孔隙凝胶微结构及对模板分子的特异性识别结合位点,因而对模板分子具有更好的吸附性能和特异选择性.其原因可能在于,模板分子上的羰基与钛酸丁酯水解产生的羟基产生氢键作用,使钛酸围绕于模板分子周围,并通过缩聚形成凝胶;当模板分子洗脱后,孔隙得到保留并形成网络状凝胶,从而能够吸附更多的模板分子.  相似文献   

11.
Novel molecularly imprinted polymer nanoparticles were synthesized by precipitation polymerization with sunset yellow as the template and [2‐(methacryloyloxy)ethyl] trimethylammonium chloride as the functional monomer. The molecularly imprinted polymer nanoparticles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and their specific surface area and thermal stability were measured. The molecularly imprinted polymer nanoparticles had a high adsorption capacity in wide pH range (pH 1–8) for sunset yellow. The adsorption equilibrium only needed 5 min, and the quantitative desorption was very fast (1 min) by using 10.0 mol/L HCl as the eluant. The maximum adsorption capacity of the molecularly imprinted polymer nanoparticles for sunset yellow was 144.6 mg/g. The adsorption isotherm and kinetic were well consistent with Langmuir adsorption model and pseudo‐second‐order kinetic model, respectively. The relative selectivity coefficients of the molecularly imprinted polymer nanoparticles for tartrazine and carmine were 9.766 and 12.64, respectively. The prepared molecularly imprinted polymer nanoparticles were repeatedly used and regenerated ten times without significant absorption capacity decrease.  相似文献   

12.
聚丙烯中空纤维膜经多巴胺氧化、硅烷化两步表面改性处理后,以甲基丙烯酸为功能单体进行表面分子印迹聚合,制备了中空纤维膜支撑-二苯并噻吩分子印迹复合膜(MIP-PP膜)。利用红外光谱、扫描电镜对印迹复合膜形态结构进行表征,测定了MIP-PP膜的脱硫性能。结果表明,在298 K时,MIP-PP膜对DBT的吸附在180 min达到平衡,最大吸附容量为133.32 mg/g;MIP-PP膜对DBT的吸附符合Lagergren准一级动力学模型及Langmuir吸附等温线,是可自发进行的放热过程。  相似文献   

13.
The synthesis of molecularly imprinted beads for the recognition of the protein Staphylococcus enterotoxin B (SEB) is described. Two kinds of organic silane (3-aminopropyltrimethoxysilane (APTMS) and octyltrimethoxysilane (OTMS)) were polymerized on the surface of polystyrene microspheres after the SEB template was covalently immobilized by forming imine bonds. The resulting imprinted beads were selective for SEB. The Langmuir adsorption models were applied to describe the equilibrium isotherms. The results showed that an equal class of adsorption was formed in the molecularly imprinted polymer (MIP) with the maximum adsorption capacity of 3.86 mg SEB/g imprinted beads. The MIP has much higher adsorption capacity for SEB than the nonimprinted polymer, and the MIP beads have a higher selectivity for the template molecule.  相似文献   

14.
Ginkgolide B is in great demand worldwide on account of its extensive and excellent pharmacological effects, however, it is difficult to separate and purify ginkgolide B. In this study, ginkgolide B molecularly imprinted polymers were prepared by combining software simulation and molecular imprinting technique, and its characterization and adsorption performed evaluation were performed to understand the adsorption behavior of the polymers. The adsorption equilibrium concentration of molecularly imprinted polymers was 0.70 mg/mL, and the adsorption equilibrium time was 4 h. Meanwhile, the adsorption isotherm of the polymers for ginkgolide B fitted well with the Langmuir model, and the adsorption kinetics was in line with the pseudo‐second‐order kinetics. In contrast, the adsorption capacity of molecularly imprinted polymers on ginkgolide B was higher than that of non‐molecular imprinted polymers, with better selectivity and better adsorption after repeated use for six times. The application experiments showed that molecular imprinted polymers have a good adsorption effect in low purity samples. Therefore, the polymers reported herein can be expected to apply in the adsorption and separation of ginkgolide B samples.  相似文献   

15.
以溶菌酶为模板蛋白质,结合分子印迹技术在硅烷化的基质玻片上制备了溶菌酶分子印迹聚合物膜。实验优化了溶菌酶聚合物膜的印迹体系,考察了溶菌酶分子印迹聚合物膜的吸附平衡时间、最大吸附量、特异识别能力、重复使用性以及对实际样品中溶菌酶的分离情况。结果表明,在最优条件下,制备的分子印迹聚合物膜对溶菌酶具有特异吸附能力,印迹因子为3.0,吸附平衡时间为5 min,吸附行为符合Langmuir吸附模型,理论最大吸附量为42.5 mg/g,实际样品中的吸附量为30 mg/g。且此印迹聚合物膜在重复使用5次后,最大吸附量仅下降了5%,具有良好的重复使用性。该方法为复杂生物样品中目标蛋白质的分离富集提供了一种快速、高效的手段。  相似文献   

16.
Atrazine contamination of water is of considerable concern because of the potential hazard to human health. In this study, a magnetic molecularly imprinted polymer for atrazine was prepared by the surface‐imprinting technique using Fe3O4 as the core, mesoporous silica as the carrier, atrazine as the template, and itaconic acid as the functional monomer. The magnetic molecularly imprinted polymer was characterized by Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, and vibration‐sample magnetometry. The binding properties of the magnetic molecularly imprinted polymer toward atrazine were investigated by adsorption isotherms, kinetics, and competitive adsorption. It was found that the adsorption equilibrium was achieved within 2 h, the maximum adsorption capacity of atrazine was 8.8 μmol/g, and the adsorption process could be well described by the Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer exhibited good adsorption selectivity for atrazine with respect to structural analogues, such as cyanazine, simetryne, and prometryn. The reusability of the magnetic molecularly imprinted polymer was demonstrated for at least five repeated cycles without a significant decrease in adsorption capacity. These results suggested that the magnetic molecularly imprinted polymer could be used as an efficient material for the selective adsorption and removal of atrazine from water samples.  相似文献   

17.
Molecularly imprinted polymer (MIP) will be modified on the surface of the core-shell structure silica magnetic nanoparticles, during which quercetin is used as a template molecule, acrylamide as a functional monomer, azo-bisisobutyronitrile as an initiator and ethylene glycol dimethacrylate as a cross-linker, to synthesize highly efficient and selective quercetin magnetic molecularly imprinted nanoparticles via Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. FT-IR and X-ray diffraction (XRD) patterns are used to monitor the reaction and show the characteristic groups of each reaction step. Compared with the conventional bulk polymerization (2.7029 mg/g), the adsorption test showed that the MMIP by RAFT activity controlled polymerization had better absorption capacity for quercetin which the saturated adsorption amount was 4.8471 mg/g. Kinetic studies indicate that pseudo first order model is suitable to describe the adsorption mechanism. Thermodynamics experiment revealed that Langmuir model was more applied for explains the adsorption of quercetin onto magnetic molecularly imprinted polymer.  相似文献   

18.
A novel type of magnetic molecularly imprinted polymer was prepared for the selective enrichment and isolation of chelerythrine from Macleaya cordata (Willd) R. Br. The magnetic molecularly imprinted polymers were prepared using functional Fe3O4@SiO2 as a magnetic support, chelerythrine as template, methacrylic acid as functional monomer, and ethylene glycol dimethacrylate as cross‐linker. Density functional theory at the B3LYP/6‐31G (d, p) level with Gaussian 09 software was applied to calculate the interaction energies of chelerythrine, methacrylic acid and the complexes formed from chelerythrine and methacrylic acid in different ratios. The structural features and morphology of the synthesized polymers were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and vibration sample magnetometry. Adsorption experiments revealed that the magnetic molecularly imprinted polymers possessed rapid kinetics, high selectivity, and a higher binding capacity (7.96 mg/g) to chelerythrine than magnetic molecularly non‐imprinted polymers (2.36 mg/g). The adsorption process was in good agreement with the Langmuir adsorption isotherm and pseudo‐second‐order kinetics models. Furthermore, the magnetic molecularly imprinted polymers were successfully employed as adsorbents for the extraction and enrichment of chelerythrine from Macleaya cordata (Willd) R. Br. The results indicated that the magnetic molecularly imprinted polymers were suitable for the selective adsorption of chelerythrine from complex samples such as natural medical plants.  相似文献   

19.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

20.
《Analytical letters》2012,45(11):1888-1899
The separation of a molecularly imprinted polymer for cordycepin was investigated. The synthesis employed cordycepin as the molecular template, alpha-methylacrylic acid as the functional monomer, glycol dimethyl acrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and tetrahydrofuran as the solvent and pore-foaming agent. The interaction between cordycepin and the functional monomer was investigated by ultraviolet-visible and infrared spectroscopy. The properties of the molecularly imprinted polymer were analyzed by scanning electron microscopy, equilibrium adsorption experiments, and the Scatchard equation. Static adsorption, solid phase extraction, and high-performance liquid chromatography experiments were employed to evaluate the adsorption properties and selective recognition characteristics. The results showed that the molecularly imprinted polymer had specific adsorption with cordycepin, and the maximum absorption capacity was 1920 µg/g. Scatchard analysis suggested that high affinity and low affinity binding sites were present. For the high affinity case, the dissociation constant and apparent maximum numbers of the binding sites were 0.0089 mmol/L and 4.78 µmol/g, respectively. The dissociation constant and apparent numbers of binding sites were 0.035 mmol/L and 6.047 µmol/g for the low affinity sites. Compared with the corresponding nonimprinted polymer, the cordycepin molecularly imprinted polymer exhibited higher adsorption and selectivity for cordycepin than structural analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号