首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
运用密度泛函理论(DFT)B3LYP方法和abinitioHF单激发组态相互作用(CIS)法分别优化了有机金属配合物8-羟基喹啉铍(BeQ2)及其3种衍生物分子的基态及最低激发单重态几何结构.系统分析了分子结构、前线分子轨道特征和能级分布规律以探索电子跃迁机理.应用含时密度泛函理论(TD-DFT)计算分子的电子光谱,揭示了BeQ2及其衍生物的发光源于配体中π→π*电子跃迁,指出通过配体修饰可以有效地影响配合物前线分子轨道分布,调整发光波段,并有效提高电荷转移量.  相似文献   

2.
在密度泛函理论B3LYP/6-311 G(2df)水平上,对C2BH3异构体进行结构优化和简谐振动频率计算。结果表明C2BH3基态为平面环状结构(1A1,C2V)。分子轨道分析显示基态有一个垂直于分子平面、双电子占据的π分子轨道;其三元环几何中心核独立化学位移(NICS)为较大负值,这些表明基态分子具有较强的芳香性。在相同的理论水平上,本文最后详细地分析了基态的红外振动光谱。  相似文献   

3.
BPh-2(mqp)的电子结构和光谱性质的含时密度泛函理论研究   总被引:2,自引:0,他引:2  
采用abinitioHF和DFTB3LYP方法,对配合物BPh2(mqp)基态结构进行优化,分析了前线分子轨道特征和能级分布.用abinitioCIS方法优化体系激发态结构.用含时密度泛函理论(TD-DFT)对BPh2(mqp)的电子光谱进行了研究.结果发现,该物质是配体发光配合物,其发光源于mqp配体内π*→π的电子跃迁.这表明在mqp配体上进行修饰,可有效地影响配合物前线分子轨道分布,达到调整发光波段的目的.  相似文献   

4.
采用密度泛函理论(DFT),在PBE0/6-31+G(d)-LANL2DZ水平下,对两种含有不同取代基的4-氨基安替比林席夫碱-Pt(Ⅱ)配合物A和B的几何构型、前线分子轨道及其分布特征进行理论计算.在优化构型的基础上,用含时密度泛函理论(TD-DFT)在相同水平下对上述配合物进行电子吸收光谱研究.计算还考虑了二氯甲烷溶剂对电子结构和光谱性质的影响.结果表明,配合物A和B的最强吸收波长分别来自于HOMO→LUMO和HOMO-5→LUMO的跃迁,以上跃迁存在明显的分子内电荷转移的特征.此外,在4-氨基安替比林配体上引入强的给电子基团-N(CH3)2,配合物A的最大吸收波长相对于配合物B发生了红移现象.  相似文献   

5.
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法, 在B3LYP/TZVP水平下, 研究了一系列给电子基团(—NH2, —OCH3和—CH3)和吸电子基团(—CCH, —CN和—NO2)在二聚(2,5-噻吩乙烯撑)(2TV)的桥基和芳环上取代对基态和激发态电子结构的影响. 结果表明, 取代基的给/吸电子能力和取代位置对衍生物的几何结构以及吸收发射光谱均有重要影响, 其中氨基(—NH2)和硝基(—NO2)取代对2TV电子结构的影响较为显著. 此外, 对于桥基和芳环取代, 随着取代基吸电子能力的增强, 衍生物的前线分子轨道HOMO和LUMO的能级均呈逐渐降低的趋势.  相似文献   

6.
用放电 LIF实验装置,对CCl4/Ar混合气体放电产生CCl2自由基,再用541.52 nm激光将电子基态CCl2激励到激发态A 1B1(0,4,0)振动能级上,通过检测激发态CCl2时间分辨荧光信号,测得室温下CCl2(A 1B1)被烷烃类分子猝灭的实验结果,用我们提出的三能级模型分析处理实验数据,获得CCl2(A 1B1)态和CCl2(a 3B1)态的碰撞猝灭速率常数kA和ka值.  相似文献   

7.
应用密度泛函理论(DFT)B3LYP/6-31G*方法计算研究了系列树型含有咪唑生色团的有机分子的结构和非线性光学性质.计算结果表明:该系列分子具有A- -D- -A(A:受体,D:给体)结构,分子基态的偶极矩、极化率、二阶NLO系数( )随共轭链的增长及吸电子基的增强而增大;同时,前线轨道能级差值越小此类分子的二阶极化率总有效值( )越大.计算的吸收光谱显示此系列树型分子在低能区域247.79nm-419.87nm都有一个最强吸收,并且均是最高占据轨道与最低空轨道之间的跃迁.  相似文献   

8.
分别采用B3LYP/6-31G(d)和CIS/6-31G(d)方法对4-(1,2-二苯基)乙烯基-4’-(N,N-二苯基-4-乙烯基苯胺基)联苯(A)及其二氟取代衍生物(B-F)的基态(S0)和单重激发态(S1)的几何构型进行了全优化, 计算获得了电离势IP、电子亲和势EA等相关数据, 并采用含时密度泛函(TD-DFT)方法计算了上述化合物的电子吸收和荧光发射光谱. 研究结果表明, 化合物A及二氟取代衍生物B-F在469-474 nm蓝光区域主发射峰的强度远远大于372-387 nm范围的次发射峰, 说明此类化合物具有纯度较高的发射光谱; 主链苯环上的二氟取代(B, C和D)使最低空轨道(LUMO)能级明显降低, 有利于提高电子注入; 芳胺基苯环上的二氟取代(D和E)使分子最高占据轨道(HOMO)能级明显降低, 电离势增加, 能隙变大, 有利于抑制空穴越过发光层向电子传输层输运, 减少界面处激基复合物的形成, 同时起到光谱蓝移的效果; 既是主链苯环上也是芳胺基苯环上的二氟取代衍生物D更有利于平衡电子-空穴的注入, 应该具有更加优良的发光性质.  相似文献   

9.
分别采用B3LYP/6-31G(d)和CIS/6-31G(d)方法对4-(1,2-二苯基)乙烯基-4'-(N,N-二苯基-4-乙烯基苯胺基)联苯(A)及其二氟取代衍生物(B-F)的基态(S0)和单重激发态(S1)的几何构型进行了全优化,计算获得了电离势IP、电子亲和势EA等相关数据,并采用含时密度泛函(TD-DFT)方法计算了上述化合物的电子吸收和荧光发射光谱.研究结果表明,化合物A及二氟取代衍生物B-F在469-474 nm蓝光区域主发射峰的强度远远大于372-387 nm范围的次发射峰,说明此类化合物具有纯度较高的发射光谱;主链苯环上的二氟取代(B,C和D)使最低空轨道(LUMO)能级明显降低,有利于提高电子注入;芳胺基笨环上的二氟取代(D和E)使分子最高占据轨道(HOMO)能级明显降低,电离势增加,能隙变大,有利于抑制空穴越过发光层向电子传输层输运,减少界面处激基复合物的形成,同时起到光谱蓝移的效果;既是主链苯环上也是芳胺基苯环上的二氟取代衍生物D更有利于平衡电子-空穴的注入,应该具有更加优良的发光性质.  相似文献   

10.
选用四种不同的密度泛函理论方法(B3LYP,BLYP,BP86,B3P86),在全电子的双ζ加极化加弥散函数基组(DZP++)下,研究Sin/Si-n (n=2 -6 )体系的结构和电子亲合能.预测Si2 /Si-2 ,Si3 /Si-3 ,Si4 /Si-4 ,Si5 /Si-5 和Si6 /Si-6 的基态结构分别为C∞h(3Σ-g ) /C∞h(2Σ+g ),D3h(3A′2 ) /C2υ(2A1 ),D2h(1Ag) /D2h(2B2g),D3h(1A′1 ) /D3h(2A″2 )和C2υ(1A1 ) /D4h(2A2u).在电子亲合能方面,B3LYP方法预测的电子亲合能是最可靠的.预测Si2,Si3,Si4,Si5和Si6的电子亲合能分别为 2. 05, 2. 34, 2. 16, 2. 48和 2. 13eV.  相似文献   

11.
Geometries and energy separations of the various low-lying electronic states of Nb(n) and Nb(n) (-) (n=4,5) clusters with various structural arrangements have been investigated. The complete active space multiconfiguration self-consistent field method followed by multireference singles and doubles configuration interaction (MRSDCI) calculations that included up to 52x10(6) configuration spin functions have been used to compute several electronic states of these clusters. The ground states of both Nb(4) ((1)A('), pyramidal) and Nb(4) (-) ((2)B(3g), rhombus) are low-spin states at the MRSDCI level. The ground state of Nb(5) cluster is a doublet with a distorted trigonal bipyramid (DTB) structure. The anionic cluster of Nb(5) has two competitive ground states with singlet and triplet multiplicities (DTB). The low-lying electronic states of these clusters have been found to be distorted due to Jahn-Teller effect. On the basis of the energy separations of our computed electronic states of Nb(4) and Nb(5), we have assigned the observed photoelectron spectrum of Nb(n) (-) (n=4,5) clusters. We have also compared our MRSDCI results with density functional calculations. The electron affinity, ionization potential, dissociation and atomization energies of Nb(4) and Nb(5) have been calculated and the results have been found to be in excellent agreement with the experiment.  相似文献   

12.
The diatomic molecule vanadium oxide, VO, and its charged species VO+ and VO- were studied by multireference and coupled cluster methods in conjunction with large basis sets. The investigation of 22 states and the construction of 21 full potential energy curves allowed for a detailed understanding of the electronic structure of these species. Our best binding energies for the ground states of VO (X4Sigma-), VO+ (X3Sigma-), and VO- (X3Sigma-) were De = 150, 138, and 143 kcal/mol, respectively, in harmony with the corresponding experimental values. For both species VO and VO+ and for all states studied, the bonding showed a strong ionic character conforming to the models V+O- and V2+O-.  相似文献   

13.
State of the art coupled cluster (CC) methods are applied to accurately characterize the ground state electronic structure and photoelectron spectra of transition metal carbene ions MCH(2) (+) (M=Fe, Co, and Ni). The geometries and energies of the lowest energy quartet, triplet, and doublet electronic states as well as several low-lying vertical excitation energies of FeCH(2) (+), CoCH(2) (+), and NiCH(2) (+) are reported. The excitation energies are computed using the equation-of-motion CC and for states of different symmetries, by the energy differences of single reference ground and excited states (Delta-CC). The latter employ several reference states; the unrestricted Hartree-Fock, restricted open shell Hartree-Fock, and unrestricted Kohn-Sham. We conclude that the (2)A(1) electronic ground state of NiCH(2) (+) is separated by about 30.0 kJ/mol from the next highest state, and the lowest (4)B(1) and (4)B(2) states of FeCH(2) (+) as well as the (3)A(2) and (3)A(1) states of CoCH(2) (+) are nearly degenerate. The presence of metal-pi*(MCH(2)) charge transfer states with significant oscillator strengths in the visible/near-UV energy domain of the theoretical spectra of FeCH(2) (+) and CoCH(2) (+) are at the origin of the photofragmentation of these compounds observed after irradiation between 310 and 360 nm.  相似文献   

14.
Ligating properties of four potentially tridentate bisphenol ligands containing [O, X, O] donor atoms (X = S 1, Se 2, P 3, or P=O 4) toward the vanadium ions in +IV or +V oxidation states have been studied. Each ligand with different heterodonor atoms yields as expected nonoxovanadium(IV) complexes, V(IV)L(2), whose structures have been determined by X-ray diffraction methods as having six-coordinate V(IV), VO(4)X(2), core. Compounds 1-4 have also been studied with electrochemical methods, variable-temperature (2-295 K) magnetic susceptibility measurements, X-band electron paramagnetic resonance (EPR) (2-60 K) spectroscopy, and magnetic circular dichroism (MCD) (5 K) measurements. Electrochemical results suggest metal-centered oxidations to V(V) (i.e., no formation of phenoxyl radicals from the coordinated phenolates). A combination of density functional theory calculations and experimental EPR investigations indicates a dramatic effect of the heteroatoms on the electronic structure of 1-4 with consequent reordering of the energy levels; 1 and 3 possess a trigonal ground state (d(z)()(2))(1), but 4 with the phosphoryl oxygen as the heterodonor atom in contrast exhibits a tetragonal ground state, (d(xy)())(1). On the basis of the intense electronic transitions in absorption spectra, all electronic transitions observed for 4 have been assigned to ligand-to-metal charge-transfer transitions, which have been confirmed by preliminary resonance Raman measurements and C/D ratios obtained from low-temperature MCD spectroscopy. Moreover, diamagnetic complexes 5 and 6 containing mononuclear and dinuclear oxovanadium(V) units have also been synthesized and structurally and spectroscopically ((51)V NMR) characterized.  相似文献   

15.
用B3LYP/6-311+G(d)方法对化合物NFeN弯曲型和直线型的不同自旋多重度多个电子态的几何结构、电子结构、能量和振动光谱进行了计算研究. 结果表明, 单重态中Fe―N键长普遍比三重态和五重态中的短, 在155 pm左右; NFeN三重态电子结构最丰富, 自然键轨道和Mulliken布居显示Fe―N键具有部分离子键特征; 两种结构的所有稳定态中能量最低的是15A2态, 能量相近的有13B1、13A2、13B2和11A1态, 直线型中能量最低是3Δg态; 相对于分子基态反应物Fe(a5D)+N2(X1Σg+)所有电子态的能量都偏高, 该反应在热力学上是不利的, 但是对于原子态反应物Fe(a5D)+2N(4S)则是放热反应; 计算振动频率和强度与实验较吻合的是13B1态; 复合物FeN2与化合物NFeN结构差异明显; Fe原子直接插入N2分子的势能曲线表明该反应能垒很高, 在动力学上也是不利的.  相似文献   

16.
Photo-induced electron detachment spectroscopy of anionic boron clusters, B(4)(-) and B(5)(-), is theoretically investigated by performing electronic structure calculations and nuclear dynamics simulations. While the electronic potential energy surfaces (X(1)A(g), ?(3)B(2u), b(3)B(1u), ?(1)B(2u), c(3)B(2g), and B(1)B(2g) of neutral B(4) and X(2)B(2), ?(2)A(1), B(2)B(2), C(2)A(1), D(2)B(1), and E(2)A(1) of neutral B(5)) and their coupling surfaces are constructed in this paper, the details of the nuclear dynamics on these electronic states are presented in Paper II. Electronic structure calculations are carried out at the complete active space self-consistent field-multi-reference configuration interaction level of theory employing the correlation consistent polarized valance triple zeta basis set. Using the calculated electronic structure data suitable vibronic Hamiltonians are constructed utilizing a diabatic electronic basis and displacement coordinates of the normal vibrational modes. The theoretical results are discussed in relation to those recorded in recent experiments.  相似文献   

17.
Quantum chemical calculations of geometric and electronic structure and vertical transition energies for several low-lying excited states of the neutral and negatively charged nitrogen-vacancy point defect in diamond (NV(0) and NV(-)) have been performed employing various theoretical methods and basis sets and using finite model NC(n)H(m) clusters. Unpaired electrons in the ground doublet state of NV(0) and triplet state of NV(-) are found to be localized mainly on three carbon atoms around the vacancy and the electronic density on the nitrogen and rest of C atoms is only weakly disturbed. The lowest excited states involve different electronic distributions on molecular orbitals localized close to the vacancy and their wave functions exhibit a strong multireference character with significant contributions from diffuse functions. CASSCF calculations underestimate excitation energies for the anionic defect and overestimate those for the neutral system. The inclusion of dynamic electronic correlation at the CASPT2 level leads to a reasonable agreement (within 0.25 eV) of the calculated transition energy to the lowest excited state with experiment for both systems. Several excited states for NV(-) are found in the energy range of 2-3 eV, but only for the 1(3)E and 5(3)E states the excitation probabilities from the ground state are significant, with the first absorption band calculated at approximately 1.9 eV and the second lying 0.8-1 eV higher in energy than the first one. For NV(0), we predict the following order of electronic states: 1(2)E (0.0), 1(2)A(2) (approximately 2.4 eV), 2(2)E (2.7-2.8 eV), 1(2)A(1), 3(2)E (approximately 3.2 eV and higher).  相似文献   

18.
Density functional theory study of small vanadium oxide clusters   总被引:2,自引:0,他引:2  
Density functional theory is employed to study structure and stability of small neutral vanadium oxide clusters in the gas phase. BPW91/LANL2DZ level of theory is used to obtain structures of VOy (y=1-5), V2Oy (y=2-7), V3Oy (y=4-9), and V4Oy (y=7-12) clusters. Enthalpies of growth and fragmentation reactions of the lowest energy isomers of vanadium oxide molecules are also obtained to study the stability of neutral vanadium oxide species under oxygen saturated gas-phase conditions. Our results suggest that cyclic and cage-like structures are preferred for the lowest energy isomers of neutral vanadium oxide clusters, and oxygen-oxygen bonds are present for oxygen-rich clusters. Clusters with an odd number of vanadium atoms tend to have low spin ground states, while clusters with even number of vanadium atoms have a variety of spin multiplicities for their ground electronic state. VO2, V2O5, V3O7, and V4O10 are predicted to be the most stable neutral clusters under the oxygen saturated conditions. These results are in agreement with and complement previous gas-phase experimental studies of neutral vanadium oxide clusters.  相似文献   

19.
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g) (-), 1(1)B(u) (+), 1(1)B(u) (-), and 1(3)B(u) (-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to show the possibility to use an excitation operator with any number of α-to-β electronic promotions.  相似文献   

20.
The spectroscopic constants for the ground (X (1)A(1)) and low-lying triplet and singlet excited states (a (3)A("),A (1)A("),B (1)A(')) of thiocarbonyl chlorofluoride (ClFCS) were obtained using the equation-of-motion coupled-cluster singles and doubles method. The calculated vibrational frequencies of the electronic states were within 4% of the experimental values for 21 of the frequencies, but four calculated frequencies were 20%-40% away from the corresponding experimentally reported values, suggesting the need to reexamine previous experimental spectra. The spectroscopic properties of the radical fragments (FCS, ClCS, and CClF) were also studied, and the correlation diagram between the excited electronic states of ClFCS and possible combinations of dissociation fragments were obtained. The potential energy surfaces (PESs) of the excited electronic states of ClFCS along possible dissociation pathways were also studied. The main qualitative dynamical features of the S(1)(A (1)A("))<--S(2)(B (1)A(')) fluorescence of ClFCS, which may occur in spite of the small barrier (8 kcalmol) on the S(2) PES to the dissociation of C-Cl bond, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号