首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
增强型电荷耦合器件用于毛细管电泳激光诱导荧光的检测   总被引:3,自引:0,他引:3  
增强型电荷耦合器件用于毛细管电泳激光诱导荧光的检测马明生,吴晓军,刘国诠(中国科学院化学研究所,北京,100080)关键词增强型电荷耦合器件,激光诱导荧光,毛细管电泳,异硫氰酸荧光黄近年来,毛细管电泳技术在生化分离、分析中得到广泛的应用。目前,毛细管...  相似文献   

2.
一种以发光二极管为激发光源的荧光检测器   总被引:5,自引:0,他引:5  
利用高亮度发光二极管作为激发光源组装了一荧光检测器并应用于毛细管电泳检测 ;激发光斑与毛细管检测池的耦合通过透镜加光阑组合方式实现 ;光纤用于收集并传输荧光信号 ,增加了光学系统的灵活性和紧凑性 ;光阑、检测池和光纤之间的校准简单、方便 ;用荧光素和异硫氰酸荧光素衍生的氨基酸考察了体系性能 ,最小检测浓度为0.18μmol/L(S/N=5) ,在2×10-7~4×10-5 mol/L范围内表现出较好的线性关系(r=0.993) ,结果表明该系统灵敏度达到了普通荧光检测器的指标  相似文献   

3.
小型可连续进样微流控芯片分析的研制   总被引:1,自引:0,他引:1  
报道了一种结构简单、可连续进样的小型控芯片分析仪的研制.顺序注射分析系统通过芯片上制作的接口将试样连续引入芯片,并采用自行设计的紧凑型光纤式激光诱导荧光检测器进行检测.该仪器用于芯片毛细管电泳分离实验室合成Cy5荧光染料,实现了连续进样和换样.峰高RSD为1.9%(n=11),试样通量35/h;相邻试样携出<4%.  相似文献   

4.
Cy-5标记脱氧核糖核酸荧光毛细分析法的研究   总被引:2,自引:0,他引:2  
在荧光毛细分析法(FCA)的基础上开发了一种用于DNA快速检测的DNA-FCA法。在毛细管内表面将DNA探针固定化,制成荧光毛细生物反应器(DNA-CBR)。测定时,用DNA-CBR吸入含Cy-5标记的靶DNA样品液进行杂交反应,然后在646nm激发波长、664nm发射波长下进行荧光测定;Cy-5标记的靶DNA浓度在0.1~1.0μmol/L之间线性良好(y=139.73x+39.613,r=0.9985);RSD〈5.5%;检出限为0.17pmol,样品用量10μL;DNA-CBR能够重复使用6次。本方法可用于靶DNA的定性和定最检测。  相似文献   

5.
报道了一种结构简单、可连续进样的小型微流控芯片分析仪的研制。顺序注射分析系统通过芯片上制作的接口将试样连续引入芯片 ,并采用自行设计的紧凑型光纤式激光诱导荧光检测器进行检测。该仪器用于芯片毛细管电泳分离实验室合成Cy5荧光染料 ,实现了连续进样和换样。峰高RSD为 1 .9% (n=1 1 ) ,试样通量 3 5 h ;相邻试样携出 <4%。  相似文献   

6.
将光纤传感技术、荧光分析与免疫分析技术结合,自行设计了Y型分叉光纤、光强可调的光纤固定架及性能优良的荧光测定池,建立了新型光纤荧光免疫系统。系统性能可靠,操作简便,既可进行普通的荧光分析,又可进行光纤荧光免疫分析。将系统用于临床血清标本中肺炎支原体抗体的测试,结果与荧光显微镜法和ELISA法结果一致。该新型光纤荧光免疫系统在临床、环保等领域有广泛的应用前景。  相似文献   

7.
激光诱导荧光检测器是目前最灵敏的检测器之一,已广泛用于毛细管电泳DNA分析中.该文对毛细管电泳-激光诱导荧光技术在DNA分析中3种主要的DNA荧光标记方式:荧光基团共价标记、PCR后标记、内插荧光染料标记进行了综述,并对其发展前景进行了展望.引用了78篇文献.  相似文献   

8.
毛细管电泳荧光检测模式的研究进展   总被引:1,自引:0,他引:1  
毛细管电泳技术由于具有分析速度快、分离效率高、样品用量少、操作简单、抗污染能力强等特点,广泛的应用于环境监测、临床检验、生物样品分析等领域.荧光检测技术的引入使毛细管电泳在保持强大的分离能力的同时具有了较高的检测灵敏度.本文介绍了影响毛细管电泳-荧光检测灵敏度的两个重要因素(光源和检测模式),对目前常用的两种光源(激光和发光二极管)以及三种检测模式的光路结构(正交型、共线型和嵌入式光纤传导-柱内直接激发型)的设计进行了相应地比较.  相似文献   

9.
发光二极管诱导荧光检测器*   总被引:1,自引:0,他引:1  
徐静  熊艳  陈士恒  关亚风 《化学进展》2009,21(6):1325-1334
发光二极管诱导荧光检测器(LED-IF)是近十年来发展起来的一种微型化荧光检测器,在流动注射、毛细管液相色谱、毛细管电泳及芯片电泳等微流动分析系统中具有广泛的应用。本文讨论了LED-IF的4种光学结构,并对其主要器件,包括光源、滤光片、透镜、光纤、光电检测器以及检测池作了详细讨论,还介绍了LED-IF与其它技术的联用及其在生物、医药和环境样品检测中的应用,对未来的发展趋势作了展望。  相似文献   

10.
毛细管电泳的微机化安培法检测   总被引:5,自引:1,他引:5  
毛细管电泳的微机化安培法检测胡深,李培标,程介克(武汉大学化学系,武汉,430072)关键词毛细管电泳;微电极;安培法检测;微型计算机安培法电化学检测器用于毛细管电泳有独特的优点,如线性范围宽,选择性好,可以进行生物微环境电活性物质的分离检测[1,2...  相似文献   

11.
Yang B  Guan Y 《Talanta》2003,59(3):509-514
A simple fluorescence detector for capillary electrophoresis (CE) using a blue light-emitting-diode (LED) as excitation source is constructed and evaluated. An optical fiber was used to collect the fluorescence, and a flat end of the fiber was modified to spherical end, resulting in 50% increase of efficiency over the flat end. A simple device for optical alignment of the fibers and capillary column was designed. The concentration and mass detection limits for fluorescein were 1.8×10−7 mol l−1 and 4.3 femol, respectively.  相似文献   

12.
Yang X  Yuan H  Wang C  Zhao S  Xiao D  Choi MM 《Electrophoresis》2007,28(17):3105-3114
A highly sensitive in-column fiber-optic LIF detector for CE has been constructed and evaluated. In this detection system, a 457-nm diode-pumped solid-state blue laser was used as the excitation light source and an optical fiber (40 mum od) was used to transmit the excitation light. One end of the optical fiber was inserted into the separation capillary and was in situ positioned at the detection window. The other end of the fiber was protruded from the capillary to capture the excitation light beam from the blue laser. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a yellow color filter before reaching the photomultiplier tube. The present CE-fluorescence detection is a simple and compact optical system. It reduces the laser scattering effect from the capillary and fiber as compared to the conventional LIF detection for CE. Its utility was successfully demonstrated by the separation and determination of D-penicillamine labeled with naphthalene-2,3-dicarboxaldehyde. The detection limit was 0.8 nM (S/N = 3). The present detection scheme has been proven to be attractive for sensitive fluorescence detection for CE.  相似文献   

13.
Zhao S  Yuan H  Xiao D 《Electrophoresis》2006,27(2):461-467
A highly sensitive optical fiber light-emitting diode (LED)-induced fluorescence detector for CE has been constructed and evaluated. In this detector, a violet or blue LED was used as the excitation source and an optical fiber with 40 microm OD was used to transmit the excitation light. The upper end of the fiber was inserted into the separation capillary and was situated right at the detection window. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a cutoff filter before reaching the photomultiplier tube. Output signals were recorded and processed with a computer using in-house written software. The present CE/fluorescence detector deploys a simple and inexpensive optical system that requires only an LED as the light source. Its utility was successfully demonstrated by the separation and determination of amino acids (AAs) labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and FITC. Low detection limits were obtained ranging from 17 to 23 nM for NDA-tagged AAs and 8 to 12 nM for FITC-labeled AAs (S/N=3). By virtue of such valuable features as low cost, convenience, and miniaturization, the presented detection scheme was proven to be attractive for sensitive fluorescence detection in CE.  相似文献   

14.
A new detector, capillary coupled with optical fiber LED‐induced fluorescence detector (CCOF‐LED‐IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF‐CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in‐capillary common optical fiber LED‐induced fluorescence detector (IC‐COF‐LED‐IFD, using COF for short). The LODs of CCOF‐CE and COF‐CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0–102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample.  相似文献   

15.
A miniaturized post-column fluorimetric detection cell for capillary separation methods based on optical fibers and liquid core waveguides (LCWs) is described. The main part of the detection cell is a fused-silica capillary coated with Teflon AF serving as an LCW. The optical fibers are used both for coupling the excitation source with the detection domain in the LCW and for the axial fluorescence collection from the LCW end. The latter fiber is connected with a compact CCD spectrometer that serves for the rejection of the scattered excitation light and for the fluorescence signal detection. The proposed design offers a compact fluorescence detector for various microcolumn separation techniques without optical elements such as filters or objectives. Moreover, its construction and optical adjustment are very simple and the whole system is highly miniaturized. The function of the detection cell is demonstrated by CE of amino acids labelled by fluorescein-based tags. Separations of different standard amino acid mixtures and plasma samples are presented. The comparison of plasma amino acid levels of individuals being in good health with those of patients with inherited metabolic disorders is also shown.  相似文献   

16.
毛细管电泳-荧光/非接触电导组合型检测器的研制   总被引:3,自引:0,他引:3  
杨丙成  谭峰  关亚风 《分析化学》2005,33(5):740-742
报道了一种毛细管电泳-荧光/非接触电导组合型检测器。该检测器共用非接触电导检测池,实现了双检测器响应同步。优化了非接触电导检测系统中激发电压信号及其频率;荧光检测是用发光二极管作为激发光源,用光纤收集并传输荧光信号至光电倍增管。用无机金属离子和异硫氰酸荧光素评价该体系,结果表明,该检测器达到了任一单类型检测器性能指标。  相似文献   

17.
Yang B  Tian H  Xu J  Guan Y 《Talanta》2006,69(4):996-1000
An integrated light emitting diode (LED)-induced fluorescence detector was described and evaluated. The LED and its related components including lens and interference filter, the optical fiber used to collect fluorescence, and the capillary column are integrated into a substrate block, which eliminates the need of align procedure of the fiber and the capillary. Forty-fold enhancement of sensitivity was obtained compared with our previous work and the detection limit for fluorescein was 5 nM. Application of the detector for the analysis of FITC-labeled Ephedrine extract was demonstrated.  相似文献   

18.
付强  杨利民  王秋泉 《色谱》2021,39(9):1030-1037
该工作报道了一种自行设计研制的便携式微型液相色谱仪(portable micro liquid chromatograph, p-μLC)。p-μLC集成了二元大推力注射泵作为流动相驱动装置、毛细管整体柱为分离介质和紫外-可见/荧光两用流通池为在线检测单元。自行设计研制的二元大推力注射泵可以实现等度/梯度洗脱和流动相再装填功能,可控流速范围在0.025 μL/min到5.6 mL/min之间;自制的甲基丙烯酸酯C-18有机聚合物毛细管整体微柱可实现自有机小分子至生物大分子的分离;自行研制的光纤式紫外-可见/荧光两用流通池,可以通过光纤导入来自光源的紫外光和可见光,并采集透射光和与入射光反方向射出的荧光信号,流通池内使用自聚焦透镜和全反射光导毛细管等器件提高通光效率和吸收光程;两用流通池通过光纤分别连接由大功率发光二极管/脉冲氙灯光源和微型光栅光谱仪所组成的检测装置进行在线吸收和荧光光谱检测,检测波长范围为220~700 nm。p-μLC采用整体手提箱式结构,流路模块、检测模块等位于下主箱体中,采集、控制模块等位于上盖中,全重不超过8 kg。仪器由装载了自编控制采集软件的内置平板电脑进行控制和数据采集。使用自行制备的甲基丙烯酸酯C-18有机聚合物毛细管整体柱,在等度洗脱模式下,在p-μLC上分离了烷基苯化合物混合样品,其分离检测效果可以与商品化大型HPLC仪器相媲美。  相似文献   

19.
An enhanced etched electrochemical (EC) detection technique has been developed for CE in micron inner diameter capillaries. The design improvements allow for better alignment between the capillary bore and the electrode. This new method involves utilizing a carbon fiber microelectrode and etching both the carbon fiber and the detection end of a micrometer-sized inner diameter capillary to limit dead volume and analyte diffusion at the amperometric EC detector. To understand the factors affecting enhanced detector efficiency, a detailed examination of the relationship between detector design and performance has been completed by exploring the effects of varying electrode diameter, tip shape, and size, in addition to the etch length of the capillary outlet. The enhanced detection provides peak efficiencies as high as 75000 theoretical plates and estimated detection limits as low as 40 nM for dopamine. This etched detection method should further facilitate volume-limited sample analysis by CE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号