首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 °C, response time as 180 s, linearity up to 780 mg dL−1 (12 mM), shelf life of 1 month, detection limit of 12 mg dL−1 and sensitivity as 5.4 × 10−5 Abs. mg−1 dL−1.  相似文献   

2.
The nanocomposite electrode comprising of polypyrrole (PPY) and carboxy functionalized multiwalled carbon nanotubes (MWCNT) has been electrochemically fabricated onto indium–tin–oxide (ITO) electrode using p‐toluene sulfonic acid (PTS). Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been immobilized onto this PPY– MWCNT/ITO nanocomposite electrode using N‐ethyl‐N‐(3‐dimethylaminopropyl) carbodiimide and N‐hydroxy succinimide chemistry for estimation of esterified cholesterol. The ChEt–ChOx/PPY–MWCNT/PTS/ITO bioelectrode has been characterized using Fourier transform infrared spectroscopy, electrochemical techniques, and scanning electron microscope. This ChEt–ChOx/PPY–MWCNT/PTS/ITO nanobioelectrode has a response time of about 9 s, linearity of 4 × 10?4 to 6.5 × 10?3 M/l of cholesterol oleate concentration, Km of 0.02 mM, and thermal stability of upto 45°C. This electrode exhibits improved biosensing characteristics compared with other total cholesterol electrodes reported in literature till date and can be used to estimate cholesterol in blood serum samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been covalently immobilized on electrochemically prepared polyaniline (PANI) films. These PANI/ChEt/ChOx enzyme films have been characterized using UV-visible, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Electrochemical behavior of these films has been studied using cyclic voltammetry (CV) and amperometric techniques, respectively. The PANI/ChEt/ChOx enzyme films show broad oxidation peak from 0.2 to 0.5 V. These PANI/ChEt/ChOx biosensing electrodes have a response time of about 40s, linearity from 50 to 500 mg/dl of cholesterol oleate concentration. These PANI/ChEt/ChOx films are thermally stable up to 46 degrees C. This polyaniline based cholesterol biosensor has optimum pH in the range of 6.5-7.5, sensitivity as 7.5x10(-4) nA/mg dl and a lifetime of about 6 weeks.  相似文献   

4.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

5.
Fabrication of an amperometric-rotating biosensor for the enzymatic determination of cholesterol is reported. The assay utilizes a combination of three enzymes: cholesterol esterase (ChE), cholesterol oxidase (ChOx) and peroxidase (HRP); which were co-immobilizing on a rotatory disk. The method is developed by the use of a glassy carbon electrode as detector versus Ag/AgCl/3 M NaCl in conjunction with a soluble-redox mediator 4-tert-butylcatechol (TBC). ChE converts esterified cholesterol to free cholesterol, which is then oxidized by ChOx with hydrogen peroxide as product. TBC is converted to 4-tert-butylbenzoquinone (TBB) by hydrogen peroxide, catalyzed by HRP, and the glassy carbon electrode responds to the TBB concentration. The system has integrated a micro packed-column with immobilized ascorbate oxidase (AAOx) that works as prereactor to eliminate l-ascorbic acid (AA) interference. This method could be used to determine total cholesterol concentration in the range 1.2 μM-1 mM (r = 0.999). A fast response time of 2 min has been observed with this amperometric-rotating biosensor. Lifetime is up to 25 days of use. The calculated detection limits was 11.9 nM. Reproducibility assays were made using repetitive standards solutions (n = 5) and the percentage standard error was less than 4%.  相似文献   

6.
Octadecanethiol (ODT) self-assembled monolayer (SAM) prepared onto gold-coated glass plate has been modified by using nitrene reaction of 1-fluoro-2-nitro-4-azidobenzene (FNAB) that further covalently binds to cholesterol oxidase (ChOx) via thermal reaction. FNAB acts as a bridge (cross-linker) between SAM and ChOx. The ChOx/FNAB/ODT/Au electrode thus fabricated has been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical techniques and X-ray photoelectron spectroscopy (XPS) technique, respectively. This ChOx/FNAB/ODT/Au bioelectrode has been utilized for estimation of cholesterol in solution using surface plasmon resonance (SPR) technique. This SPR based cholesterol biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with lower detection limit of 50 mg/dl and shelf life of about 2 months when stored at 4 °C.  相似文献   

7.
Arya SK  Pandey P  Singh SP  Datta M  Malhotra BD 《The Analyst》2007,132(10):1005-1009
A dithiobissuccinimidyl propionate (DTSP) self-assembled monolayer (SAM) prepared onto a gold (Au) surface has been utilized for covalent immobilization of cholesterol oxidase (ChOx) and cholesterol esterase (ChEt). These ChOx-ChEt/DTSP/Au bio-electrodes have been characterized using electrochemical impedance and cyclic voltammetric (CV) techniques, respectively. Differential pulse voltammetry (DPV) has been used for enzymatic assay of immobilized ChOx and ChEt onto the DTSP modified gold surface as a function of cholesterol oleate concentration. The response measurement conducted on ChOx-ChEt/DTSP/Au bio-electrode reveal the value of Michaelis-Menten constant (Km) as 0.95 mM suggesting enhanced affinity of enzymes (ChOx and ChEt). The ChOx-ChEt/DTSP/Au bio-electrodes show linearity in range of 50 to 400 mg dl(-1) of cholesterol oleate and the shelf-life of more than 50 days when stored at 4 degrees C. This biosensing electrode shows correlation coefficient of 0.9973 and standard deviation of regression as 0.859 microA.  相似文献   

8.
Shi H  Yang Y  Huang J  Zhao Z  Xu X  Anzai J  Osa T  Chen Q 《Talanta》2006,70(4):852-858
An amperometric choline biosensor was developed by immobilizing choline oxidase (ChOx) in a layer-by-layer (LBL) multilayer film on a platinum (Pt) electrode modified with Prussian blue (PB). 6-O-Ethoxytrimethylammoniochitosan chloride (EACC) was used to prepare the ChOx LBL films. The choline biosensor was used at 0.0 V versus Ag/AgCl to detect choline and exhibited good characteristics such as relative low detection limit (5 × 10−7 M), short response time (within 10 s), high sensitivity (88.6 μA mM−1 cm−2) and a good selectivity. The results were explained based on the ultrathin nature of the LBL films and the low operating potential that could be due to the efficient catalytic reduction of H2O2 by PB. In addition, the effects of pH, temperature and applied potential on the amperometric response of choline biosensor were evaluated. The apparent Michaelis-Menten constant was found to be (0.083 ± 0.001) ×10−3 M. The biosensor showed excellent long-term storage stability, which originates from a strong adsorption of ChOx in the EACC multilayer film. When the present choline biosensor was applied to the analysis of phosphatidylcholine in serum samples, the measurement values agreed satisfactorily with those by a hospital method.  相似文献   

9.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

10.
Kumar A  Pandey RR  Brantley B 《Talanta》2006,69(3):700-705
Sol-gel derived tetraethylorthosilicate (TEOS) films were prepared by spin coating method on indium tin oxide (ITO) coated glass plate. Hydrophobic interaction method was used to coat the bovine serum albumin film over the surface of tetraethylorthosilicate sol-gel film to minimize cracking, biofouling and to improve the stability of the film. Cholesterol oxidase (ChOx) and horseradish peroxidase (HRP) were immobilized using covalent linkage with bovine albumin serum film to enhance the loading of the enzyme to improve the sensitivity of biosensor. Further ITO-TEOS-BSA-ChOx/HRP film was characterized by UV-vis, FTIR and SEM techniques. The optical response of the ITO-TEOS-BSA-ChOx/HRP biosensor was found to be linear in the range of 2-8 mM for cholesterol concentration with response time approximately 20 s. Amperometric response of ITO-TEOS-BSA-ChOx/HRP was observed to be linear in the range of 2-12 mM of cholesterol concentration with 10-s response time. Michaelis-Menten constant was calculated 21.2 mM .The shelf life of ITO-TEOS-BSA-ChOx/HRP biosensor was approximately about 8 weeks in desiccated conditions at room temperature.  相似文献   

11.
Cholesterol oxidase (ChOx) has been immobilized onto conducting poly[2-methoxy,5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)/stearic acid (SA) Langmuir-Blodgett film transferred onto octadecanethiol (ODT) modified gold plate. The ChOx/MEH-PPV/SA LB film bioelectrode exhibits has been characterized by FT-IR, contact angle, and atomic force microscopy. The response of the ChOx/MEH-PPV/SA LB film bioelectrode carried out using differential pulse voltammetry (DPV) studies reveal linearity from 1.29 to 12.91 mM of cholesterol concentration and response time as 30 s. This ChOx/MEH-PPV/SA bioelectrode exhibits values of correlation coefficient as 0.9939, standard deviation as 0.0029 μA and limit of detection as 1.66 mM. UV-visible spectrophotometer studies reveal that 5.2 × 10−3 U of ChOx are actively working per cm2 area of ChOx/MEH-PPV/SA LB film bioelectrode and this bioelectrode is thermally stable upto 55 °C with reusability of about 60 times.  相似文献   

12.
A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H2O2 produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL−1 to 270.69 mg dL−1), low detection limit (0.25 mg dL−1), and high sensitivity (49.61 μA mM−1 cm−2). The precision value for ten replicates was 3.76% RSD for 1 mM H2O2. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time.  相似文献   

13.
A rapid, simple and reproducible two-step method for constructing cholesterol biosensors by covalently bonding cholesterol oxidase (ChOx) to a 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP)-modified gold electrode is described. Exhaustive characterizations of both the immobilization process and the morphological properties of the resulting ChOx monolayer were performed via a quartz crystal microbalance (QCM) and atomic force microscopy (AFM) operated under liquid conditions, respectively. In addition, scanning electrochemical microscopy (SECM) measurements were performed in order to check that the immobilized enzyme retains its catalytic activity. The replacement of the natural electron acceptor (O2) in the enzymatic reaction with an artificial mediator, hydroxymethylferrocene (HMF), was also studied. Finally, cholesterol was amperometrically determined by measuring the hydrogen peroxide produced during the enzymatic reaction at +0.5 V. The optimized cholesterol biosensor exhibited a sensitivity of 54 nA mM−1 and a detection limit of 22 μM.  相似文献   

14.
Direct electrochemistry of cholesterol oxidase (ChOx) immobilized on the conductive poly‐3′,4′‐diamine‐2,2′,5′,2″‐terthiophene (PDATT) was achieved and used to create a cholesterol biosensor. A well‐defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH2 of ChOx, and the rate constant (ks) was determined to be 0.75 s?1. Glutathione (GSH) covalently bonded with PDATT was used as a matrix for conjugating AuNPs, ChOx, and MP, simultaneously. MP co‐immobilized with ChOx on the AuNPs‐GSH/PDATT exhibited an excellent amperometric response to cholesterol. The dynamic range was from 10 to 130 μM with a detection limit of 0.3±0.04 μM.  相似文献   

15.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

16.
A chitosan (CS)‐tin oxide (SnO2) nanobiocomposite film has been deposited onto an indium‐tin‐oxide glass plate to immobilize cholesterol oxidase (ChOx) for cholesterol detection. The value of the Michaelis–Menten constant (Km) obtained as 3.8 mM for ChOx/CS‐SnO2/ITO is lower (8 mM) than that of a ChOx/CS/ITO bioelectrode revealing enhancement in affinity and/or activity of ChOx towards cholesterol and also revealing strong binding of ChOx onto CS‐SnO2/ITO electrode. This ChOx/CS‐SnO2/ITO cholesterol sensor retains 95% of enzyme activity after 4–6 weeks at 4 °C with response time of 5 s, sensitivity of 34.7 μA/mg dL?1 cm2 and detection limit of 5 mg/dL.  相似文献   

17.
We have used the AT-cut quartz crystal sensor to measure in real-time the total cholesterol concentration in buffer and serum, using the trienzyme system of cholesterol esterase (ChE), cholesterol oxidase (ChOx) and horseradish peroxidase (HRP). The hydrogen peroxide produced from the ChE-ChOx reaction oxidises diaminobenzidine (DAB), in the presence of HRP. The response of the sensor to cholesterol is optimal in the presence of 0.1% (v/v) Triton X-100 at 0.2 U/ml ChOx, and 1 U/ml ChE. A response is obtained in less than 25 min. Using the optimal concentrations of the reagents, the linear range for free cholesterol and low density lipoprotein (LDL) cholesterol determination was between 50 and 300 μM, and 25 and 400 μM, respectively. It was found that the concentration of high density lipoprotein (HDL) cholesterol could not be determined because it solubilised the oxidised DAB, leading to poor adsorption at the crystal surface. We obtained a response to the use of cholesterol in serum at 300 μM, demonstrating that this biosensor could be used for cholesterol determination in clinical samples.  相似文献   

18.
Three cholesterol biosensor configurations based on the formation of a layer of Prussian-Blue (PB) on a Pt electrode for the electrocatalytic detection of the H2O2 generated during the enzymatic reaction of cholesterol with cholesterol oxidase (ChOx) were constructed. The enzyme was entrapped within a polypyrrole (PPy) layer electropolymerized onto the PB film. The influence of the formation of self-assembled monolayers (SAMs) on the Pt surface on the adherence and stability of the PB layer and the formation of an outer layer of nafion (Nf) as a means of improving selectivity were both studied. A comparative study was made of the analytical properties of the biosensors corresponding to the three configurations named: Pt/PB/PPy-ChOx, Pt/SAM/PB/PPy-ChOx and Pt/SAM/PB/PPy-ChOx/Nf. The sensitivity (from 600 to 8500 nA mM−1 cm−2) and selectivity of the developed biosensors permitted the determination of the cholesterol content in reference and synthetic serum samples. The detection limit for the Pt/SAM/PB/PPy-ChOx/Nf biosensor was 8 μM. Formation of the SAM on the electrode surface and covering with a Nf film considerably improved the stability and lifetime of the biosensor based on the catalytic effect of the PB layer (as the PB layer was retained longer on the electrode), and the Nf layer protects the enzyme from the external flowing solutions. Lifetime is up to 25 days of use. The formation of the SAM also has an effect on the charge transfer and the formation of the PB layer.  相似文献   

19.
Ahmad Umar  M.M. Rahman  Y.-B. Hahn 《Talanta》2009,78(1):284-1855
This paper reports the fabrication of highly-sensitive cholesterol biosensor based on cholesterol oxidase (ChOx) immobilization on well-crystallized flower-shaped ZnO structures composed of perfectly hexagonal-shaped ZnO nanorods grown by low-temperature simple solution process. The fabricated cholesterol biosensors reported a very high and reproducible sensitivity of 61.7 μA μM−1 cm−2 with a response time less than 5 s and detection limit (based on S/N ratio) of 0.012 μM. The biosensor exhibited a linear dynamic range from 1.0-15.0 μM and correlation coefficient of R = 0.9979. A lower value of apparent Michaelis-Menten constant (Kmapp), of 2.57 mM, exhibited a high affinity between the cholesterol and ChOx immobilized on flower-shaped ZnO structures. Moreover, the effect of pH on ChOx activity on the ZnO modified electrode has also been studied in the range of 5.0-9.0 which exhibited a best enzymatic activity at the pH range of 6.8-7.6. To the best of our knowledge, this is the first report in which such a very high-sensitivity and low detection limit has been achieved for the cholesterol biosensor by using ZnO nanostructures modified electrodes.  相似文献   

20.
Based on hemin‐MWCNTs nanocomposite and hemin‐catalyzed luminol‐H2O2 reaction, a sensitive electrogenerated chemiluminescence (ECL) cholesterol biosensor was proposed in this paper. Firstly, hemin‐MWCNTs was prepared via π–π stacking and modified on the surface of GCE. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the modified electrode to achieve a cholesterol biosensor. Hemin‐MWCNTs nanocomposite provided the electrode with a large surface area to load ChOx, and endowed the nanostructured interface on the electrode surface to enhance the performance of biosensor. The biosensor responded to cholesterol in the linear range from 0.3 µM to 1.2 mM with a detection limit of 0.1 µM (S/N=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号