首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 °C, response time as 180 s, linearity up to 780 mg dL−1 (12 mM), shelf life of 1 month, detection limit of 12 mg dL−1 and sensitivity as 5.4 × 10−5 Abs. mg−1 dL−1.  相似文献   

2.
Cholesterol amperometric biosensors constructed with enzymes entrapped in electropolymerized layers of polypyrrole and poly-naphthalene derivative polymers are compared. The biosensors are based on entrapment of cholesterol oxidase and/or cholesterol esterase in monolayer or multilayer films electrochemically synthesised from pyrrole, 1,8-diaminonaphthalene (1,8-DAN), and 1,5-diaminonaphthalene (1,5-DAN) monomers. Seven configurations were assayed and compared, and different analytical properties were obtained depending on the kind of polymer and the arrangement of the layers. The selectivity properties were evaluated for the different monolayer and bilayer configurations proposed as a function of the film permeation factor. All the steps involved in the preparation of the biosensors and determination of cholesterol were carried out in a flow system. Sensitivity and selectivity depend greatly on hydrophobicity, permeability, compactness, thickness, and the kind of the polymer used. In some cases a protective outer layer of non-conducting poly(o-phenylenediamine) polymer improves the analytical characteristics of the biosensor. A comparative study was made of the analytical performance of each of the configurations developed. The biosensors were also applied to the flow-injection determination of cholesterol in a synthetic serum.  相似文献   

3.
We report on the utilization of gold nanorods to create a highly responsive glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in gold nanorod is investigated. GOx is simply mixed with gold nanorods and cross-linked with a cellulose acetate (CA) medium by glutaraldehyde. The adsorption of GOx on the gold nanorods is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Circular dichroism (CD) and UV-spectrum results show that the activity of GOx was preserved after conjugating with gold nanorods. The current response of modified electrode is 10 times higher than that of without gold nanorods. Under optimal conditions, the biosensor shows high sensitivity (8.4 μA cm−2 mM−1), low detection limit (2 × 10−5 M), good storage stability and high affinity to glucose (). A linear calibration plot is obtained in the wide concentration range from 3 × 10−5 to 2.2 × 10−3 M.  相似文献   

4.
The development of a cholesterol biosensor by co-immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOX) on oxygen electrode is described. The electrode consists of gold cathode and Ag/AgCl anode. The enzymes were immobilized by cross-linking with glutaraldehyde and Bovine Serum Albumin (BSA). The immobilized enzymatic membrane was attached to the tip of the electrode by a push cap system. The optimum pH and temperature of the sensor was determined, these are 6 and 25 degrees C respectively. The developed sensor was calibrated from 1-75 mg/dl of cholesterol palmiate and found linear in the range of 2-50 mg/dL. The calibration curve was drawn with V(i) (ppm/min)(initial velocity) vs different concentrations of cholesterol palmiate (mg/dL). The application of the sensor to determine the total cholesterol in different real food samples such as egg, meat was investigated. The immobilized enzymatic layer can be reused over 30 times and the stability of the enzymatic layer was studied up to 9 weeks.  相似文献   

5.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

6.
An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase in a Prussian blue (PB)/polypyrrole (PPy) composite film on the surface of a glassy carbon electrode was fabricated. Hydrogen peroxide produced by the enzymatic reaction was catalytically reduced on the PB film electrode at 0 V with a sensitivity of 39 μA (mol/L)?1. Cholesterol in the concentration range of 10?5 ? 10?4 mol/L was determined with a detection limit of 6 × 10?7 mol/L by amperometric method. Normal coexisting compounds in the bio‐samples such as ascorbic acid and uric acid do not interfere with the determination. The excellent properties of the sensor in sensitivity and selectivity are attributed to the PB/PPy layer modified on the sensor.  相似文献   

7.
An amperometric biosensor for hypoxanthine determination has been developed. The sensor uses a Nafion-paraquat chemically modified glassy-carbon electrode. It detects the oxygen consumed by the enzymatic reaction catalyzed by xanthine oxidase which is immobilized on the electrode surface. The sensor responds linearly to hypoxanthine over the concentration range of 1 × 10−6 M −2 × 10−4 M. The biosensor can be reused for more than 100 times without significant deterioration in performance. After 32 days storage at 3–5°C, the sensor response remains at 68% of the initial level. The high sensitivity, selectivity and stability of this biosensor demonstrates its practical applicability for a simple, rapid and economical determination of hypoxanthine in fish samples.  相似文献   

8.
Fabrication of an amperometric-rotating biosensor for the enzymatic determination of cholesterol is reported. The assay utilizes a combination of three enzymes: cholesterol esterase (ChE), cholesterol oxidase (ChOx) and peroxidase (HRP); which were co-immobilizing on a rotatory disk. The method is developed by the use of a glassy carbon electrode as detector versus Ag/AgCl/3 M NaCl in conjunction with a soluble-redox mediator 4-tert-butylcatechol (TBC). ChE converts esterified cholesterol to free cholesterol, which is then oxidized by ChOx with hydrogen peroxide as product. TBC is converted to 4-tert-butylbenzoquinone (TBB) by hydrogen peroxide, catalyzed by HRP, and the glassy carbon electrode responds to the TBB concentration. The system has integrated a micro packed-column with immobilized ascorbate oxidase (AAOx) that works as prereactor to eliminate l-ascorbic acid (AA) interference. This method could be used to determine total cholesterol concentration in the range 1.2 μM-1 mM (r = 0.999). A fast response time of 2 min has been observed with this amperometric-rotating biosensor. Lifetime is up to 25 days of use. The calculated detection limits was 11.9 nM. Reproducibility assays were made using repetitive standards solutions (n = 5) and the percentage standard error was less than 4%.  相似文献   

9.
Nitrate-doped polypyrrole (PPy) films on a glassy carbon substrate have been prepared electrochemically in aqueous, acetonitrile, and propylene carbonate solutions for use as nitrate sensors. Lithium nitrate, sodium nitrate, nitric acid, tetraethylammonium p-toluene sulfonate (TS), and tetradodecylammonium nitrate (TDN) were employed as electrolytes. The effect of dibutylphthalate (DBP) as a plasticizer on the sensitivity and lifetime of PPy film sensors was also investigated. A Nernstian behavior with a slope of 56.9 m V/decade over 0.1–7.4 × 10−5 M NO and a detection limit of 4.7 × 10−5 M were observed for the polymer sensor prepared in acetonitrile solution containing lithium nitrate and 15% plasticizer (DBP). A lifetime of more than 6 months for this PPy film electrode was obtained.  相似文献   

10.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

11.
Redox enzyme – glucose oxidase E.C. 1.1.3.4 from Penecillum vitale (GOx) – initiated polypyrrole (Ppy) synthesis was applied for the formation of polypyrrole based nanoparticles. The increase in optical absorbance at λ = 460 nm was exploited for the monitoring of polypyrrole polymerisation process. The shape and size of the formed Ppy nanoparticles was also monitored by means of contact mode AFM. The highest increase in the diameter of the formed Ppy nanoparticles was detected during 15-day period. AFM imaging was performed in contact mode to investigate the shape and flexibility of particles deposited on the SiO2 and Pt surfaces. Contact mode AFM investigations allowed us to conclude that after drying at 50 °C the formed Ppy particles are more flexibly deposited on the Pt electrode if compared to those deposited on the SiO2 substrate. The application of well-shaped Ppy nanoparticles in biomedicine, chromatography and bioanalysis may be predicted.  相似文献   

12.
《European Polymer Journal》2003,39(12):2375-2381
Immobilization of invertase and glucose oxidase in conducting polypyrrole and copolymers of poly 2-methylbutyl-2-(3-thienyl) acetate with pyrrole were achieved via electrochemical method. Sodium dodecyl sulphate was found to be the most suitable supporting electrolyte. Maximum reaction rate, Michaelis-Menten constant and optimum temperatures were determined for native and immobilized enzymes. Storage and operational stabilities of enzyme electrodes were also investigated.  相似文献   

13.
Cholesterol esterase and cholesterol oxidase were immobilized on octyl-agarose gel, activated with cyanogen bromide and placed in a reactor. The sensor system for total cholesterol was assembled with the immobilized enzyme reactor, a hydrogen peroxide electrode and a peristaltic pump. Characteristics of the sensor system were investigated by using cholesterol palmitate as a standard substrate. A linear relationship was obtained between peak current and cholesterol palmitate concentration below 1000 mg dl-1 (10.3 mM). A 10-μl sample could be assayed in 5 min. Total cholesterol in human serum was determined in the range 100–400 mg dl-1. The standard deviation for the determination of 50 samples of 300 mg dl-1 was 6 mg dl-1 (2%). The system was used for 300 assays without loss of enzymatic activity. The correlation coefficient was 0.94 for 27 samples of human sera analyzed by the system proposed and by the conventional chemical method.  相似文献   

14.
Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been covalently immobilized on electrochemically prepared polyaniline (PANI) films. These PANI/ChEt/ChOx enzyme films have been characterized using UV-visible, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Electrochemical behavior of these films has been studied using cyclic voltammetry (CV) and amperometric techniques, respectively. The PANI/ChEt/ChOx enzyme films show broad oxidation peak from 0.2 to 0.5 V. These PANI/ChEt/ChOx biosensing electrodes have a response time of about 40s, linearity from 50 to 500 mg/dl of cholesterol oleate concentration. These PANI/ChEt/ChOx films are thermally stable up to 46 degrees C. This polyaniline based cholesterol biosensor has optimum pH in the range of 6.5-7.5, sensitivity as 7.5x10(-4) nA/mg dl and a lifetime of about 6 weeks.  相似文献   

15.
Kinetic studies of cholesterol oxidation catalyzed by soluble cholesterol oxidase fromBrevibacterium were conducted. The optimum temperature and pH were found to be 40–45°C and 7.0, respectively. A plot of initial reaction rate versus cholesterol concentration is sigmoidal in shape. Analysis of the data suggests that the reaction follows a concerted model and not a stepwise model.  相似文献   

16.
Tang L  Zhu Y  Yang X  Li C 《Analytica chimica acta》2007,597(1):145-150
An enhanced amperometric biosensor based on incorporating one kind of unique nanobiocomposite as dopant within an electropolymerized polypyrrole film has been investigated. The nanobiocomposite was synthesized by self-assembling glutamate dehydrogenase (GLDH) and poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) onto multiwall carbon nanotubes (CNTs). ζ-Potentials and high-resolution transmission electron microscopy (HRTEM) confirmed the uniform growth of the layer-by-layer nanostructures onto the carboxyl-functionalized CNTs. The size of Pt nanoparticles is approximately 3 nm. The (GLDH/Pt-DENs)n/CNTs/Ppy hybrid film was obtained by electropolymerization of pyrrole onto glassy carbon electrodes and characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and other electrochemical measurements. All methods indicated that the (GLDH/Pt-DENs)n/CNTs nanobiocomposites were entrapped within the porous polypyrrole film and resulted in a hybrid film that showed a high electrocatalytic ability toward the oxidation of glutamate at a potential 0.2 V versus Ag/AgCl. The biosensor shows performance characteristics with high sensitivity (51.48 μA mM−1), rapid response (within 3 s), low detection limit (about 10 nM), low level of interference and excellent reproducibility and stability.  相似文献   

17.
Cholesterol oxidase biosensor has been constructed by using bovine serum albumin and glutaraldehyde as cross linker to immobilize cholesterol oxidase and cholesterol esterase on a glassy carbon electrode modified with Nafion and methyl viologen. The biosensor has been used to determine total cholesterol in blood. The linear range of the determination is 2.5×10~7 to 1.0×10-4 mol/L. The detection limit is about 5.0×10~8 mol/L. The response time is 12 s. This biosensor has the advantage of high selectivity, sensitivity and short response time.  相似文献   

18.
Xia Chu  Daxue Duan  Guoli Shen  Ruqin Yu 《Talanta》2007,71(5):2040-2047
A new amperometric biosensor for glucose was developed based on adsorption of glucose oxidase (GOx) at the gold and platinum nanoparticles-modified carbon nanotube (CNT) electrode. CNTs were covalently immobilized on gold electrode via carbodiimide chemistry by forming amide linkages between carboxylic acid groups on the CNTs and amine residues of cysteamine self-assembled monolayer (SAM). The fabricated GOx/Aunano/Ptnano/CNT electrode was covered with a thin layer of Nafion to avoid the loss of GOx in determination and to improve the anti-interferent ability. The immobilization of CNTs on the gold electrode was characterized by quartz crystal microbalance technique. The morphologies of the CNT/gold and Ptnano/CNT/gold electrodes have been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the gold, CNT/gold, Ptnano/gold and Ptnano/CNT/gold electrodes has also been studied by amperometric method. In addition, effects of electrodeposition time of Pt nanoparticles, pH value, applied potential and electroactive interferents on the amperometric response of the sensor were discussed.

The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for glucose in the absence of a mediator. The linear range was from 0.5 to 17.5 mM with correction coefficient of 0.996. The biosensor had good reproducibility and stability for the determination of glucose.  相似文献   


19.
The achievements in the area of enzyme stabilization based on electrolytes, polyelectrolytes and polyols is reviewed, in the context of biosensor applications. Both the storage and operational stabilities of the biosensors can be improved using these stabilizers. The deactivation of the enzymes used for the development of biosensors from thermal shock, proteolytic degradation, and non-specific metal-catalyzed oxidation can be drastically reduced with the use of one or more of these stabilizers. It is attempted to deconvolute the effect of these additives on (a) the storage stability or shelf life, and (b) the operational stabilities of the biosensors. Even though there are a large number of techniques and reports dealing with enzyme stabilization, their application to biosensor technology is still very limited. It is thus concluded that the use of the existing enzyme stabilization techniques will have a drastic effect on the storage and operational stabilities of biosensors in the near future.  相似文献   

20.
Interest in bio-imprinting techniques has increased because it allows some stability characteristics of enzymes to be improved. In this study, we developed a simple way to improve the thermal and pH stabilities of ascorbate oxidase biosensor. The membrane of a Clark oxygen electrode was coated by a bioactive layer containing ascorbate oxidase and gelatin cross-linked by glutaraldehyde. Citrate was used to imprint the ascorbate oxidase molecularly. The optimum temperature and pH of both unmodified and citrate modified biosensors were investigated, by comparing their resulting stability. Also, calibration graphs and operational stabilities were compared with each other. The results showed that this simple way should be used to improve the stabilities of a biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号