首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular imaging by Mid-IR laser ablation mass spectrometry
Authors:Akos Vertes  Peter Nemes  Bindesh Shrestha  Alexis A Barton  Zhaoyang Chen  Yue Li
Institution:(1) Department of Chemistry, George Washington University, 725 21st Street, N.W., Washington, DC 20052, USA
Abstract:Mid-IR laser ablation at atmospheric pressure (AP) produces a mixture of ions, neutrals, clusters, and particles with a size distribution extending into the nanoparticle range. Using external electric fields the ions can be extracted and sampled by a mass spectrometer. In AP infrared (IR) matrix-assisted laser desorption ionization (MALDI) experiments, the plume was shown to contain an appreciable proportion of ionic components that reflected the composition of the ablated target and enabled mass spectrometric analysis. The detected ion intensities rapidly declined with increasing distance of sampling from the ablated surface to ∼4 mm. This was rationalized in terms of ion recombination and the stopping of the plume expansion by the background gas. In laser ablation electrospray ionization (LAESI) experiments, the ablation plume was intercepted by an electrospray. The neutral particles in the plume were ionized by the charged droplets in the spray and enabled the detection of large molecules (up to 66 kDa). Maximum ion production in LAESI was observed at large (∼15 mm) spray axis to ablated surface distance indicating a radically different ion formation mechanism compared to AP IR-MALDI. The feasibility of molecular imaging by both AP IR-MALDI and LAESI was demonstrated on targets with mock patterns. Presented at the 9-th International Conference on Laser Ablation, 2007 Tenerife, Canary Islands, Spain
Keywords:PACS" target="_blank">PACS  52  38  Mf  79  20  Ds  82  80  Ms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号