首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength
Authors:M Forrer  M Frenz  V Romano  H J Altermatt  H P Weber  A Silenok  M Istomyn  V I Konov
Institution:(1) Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012 Berne, Switzerland;(2) Institute of Pathology, University of Berne, CH-3012 Berne, Switzerland;(3) General Institute of Physics, Russian Academy of Sciences, Moscow, Russia
Abstract:Bone ablation using different pulse parameters and four emission lines of 9.3, 9.6, 10.3, and 10.6 mgrm of the CO2 laser exhibits effects which are caused by the thermal properties and the absorption spectrum of bone material. The ablation mechanism was investigated with light- and electron-microscopy at short laser-pulse durations of 0.9 and 1.8 mgrs and a long pulse of 250 mgrs. It is shown that different processes are responsible for the ablation mechanism either using the short or the long pulse durations. In the case of short pulse durations it is shown that, although the mineral components are the main absorber for CO2 radiation, water is the driving force for the ablation process. The destruction of material is based on explosive evaporation of water with an ablation energy of 1.3 kJ/cm3. Histological examination revealed a minimal zone of 10–15 mgrm of thermally altered material at the bottom of the laser drilled hole. Within the investigated spectral range we found that the ablation threshold at 9.3 and 9.6 mgrm is lower than at 10.3 and 10.6 mgrm. In comparison the ablation with a long pulse duration is determined by two processes. On the one side, the heat lost by heat conduction leads to carbonization of a surface layer, and the absorption of the CO2 radiation in this carbonized layer is the driving force of the ablation process. On the other side, it is shown that up to 60% of the pulse energy is absorbed in the ablation plume. Therefore, a long pulse duration results in an eight-times higher specific ablation energy of 10 kJ/cm3.
Keywords:61  80  Ba  79  20  Ds  87  50  Eg  87  55  Hb  87  80  +s
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号