首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   51篇
  国内免费   64篇
化学   173篇
晶体学   22篇
综合类   2篇
物理学   134篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   15篇
  2016年   12篇
  2015年   14篇
  2014年   16篇
  2013年   28篇
  2012年   16篇
  2011年   25篇
  2010年   24篇
  2009年   24篇
  2008年   28篇
  2007年   23篇
  2006年   15篇
  2005年   16篇
  2004年   11篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有331条查询结果,搜索用时 156 毫秒
1.
Owing to the difficulty in comprehensively characterizing nanocrystal (NC) surfaces, clear guidance for ligand design is lacking. In this work, a series of bidentate bis(pyridine) anthracene isomers (2,3‐PyAn, 3,3‐PyAn, 2,2‐PyAn) that differ in their binding geometries were designed to find the best complementary fit to the NC surface. The efficiency of triplet energy transfer (TET) from the CdSe NC donor to a diphenylanthracene (DPA) acceptor mediated by these isomers was used as a proxy for the efficacy of orbital overlap and therefore ligand binding. 2,3‐PyAn, with an intramolecular N–N distance of 8.2 Å, provided the best match to the surface of CdSe NCs. When serving as a transmitter for photon upconversion, 2,3‐PyAn yielded the highest upconversion quantum yield (QY) of 12.1±1.3 %, followed by 3,3‐PyAn and 2,2‐PyAn. The TET quantum efficiencies determined by ultrafast transient absorption measurements showed the same trend.  相似文献   
2.
The prevalence of engineered metallic nanoparticles within electronic products has evoked a need to assess their occurrence and fate within environmental systems upon potential release of these nanoparticles. Quantum dots (QDs) are mixed-metal nanocrystals with the smallest of particle sizes (2–10 nm) that readily leach heavy metal cations in water, potentially creating a co-occurrence of nanoparticulate and dissolved metal pollutants. In this report, we develop a size exclusion chromatography–inductively coupled plasma–mass spectrometry method (SEC-ICP-MS) for the rapid separation and quantification of ~5-nm-sized CdSe/ZnS QDs and dissolved Cd2+ and Zn2+ cations in water. The SEC-ICP-MS method provided a wide chromatographic separation of CdSe/ZnS QDs and dissolved Cd2+ and Zn2+ cations only when using the smallest SEC column pore size available and an eluent composition that prevented loss of metals to column polymer surfaces by using a surfactant to ensure elution of QDs (ammonium lauryl sulfate) and a complexing ligand to ensure elution of metal cations (ethylenediaminetetraacetate). Detection limits were between 0.2 and 2 µg L1 for Cd2+ and Zn2+ among dissolved cation and QD phases, and ranges of linearity covered two to three orders of magnitude. Gold nanoparticles of sizes 5, 10, 20 and 50 nm were also effectively separated from dissolved Au3+ cations, illustrating the method applicability to a wide range of nanoparticle sizes and compositions. QD and dissolved metal concentrations measured by SEC-ICP-MS were comparable to those measured using the more conventional method of centrifuge ultrafiltration on split samples for dissolved and total metals. The applicability of the SEC-ICP-MS method to environmental systems was verified by measuring QDs and dissolved metals added to samples of natural waters. The method was also applied to monitoring CdSe/ZnS dissolution kinetics in an urban river water. The SEC-ICP-MS developed here may offer improved automation for characterising heterogeneous suspensions containing >1 µg L1 heavy metals.  相似文献   
3.
Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using 1H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self‐adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X‐type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X‐type ligands yielding a combined X2 binding motif that allows for self‐adsorption and exchange for L‐type ligands.  相似文献   
4.
耿琰  王河林  陈中师 《光子学报》2015,44(1):106006-0106006
基于有限元法,设计了一种六边形排列含CdSe/ZnS量子点薄膜结构的高双折射光子晶体光纤,分析了具有不同厚度CdSe/ZnS量子点薄膜光子晶体光纤的色散及损耗特性.结果表明,含CdSe/ZnS量子点薄膜结构的光子晶体光纤在x和y方向均存在基模.当泵浦光波长逐渐增加时,具有相同厚度CdSe/ZnS量子点薄膜光子晶体光纤的双折射值逐渐增大,x和y方向总色散先增大后减小且存在两个零色散点,损耗逐渐增大并在可见光波段趋近于零;具有不同厚度CdSe/ZnS量子点薄膜光子晶体光纤随CdSe/ZnS量子点薄膜厚度的增加,在相同泵浦光波长处,双折射值逐渐减小,x和y方向总色散逐渐减小且两个零色散点逐渐靠近,损耗逐渐增大.通过沉积不同厚度CdSe/ZnS量子点薄膜和选择合适泵浦光波长,可有效控制光子晶体光纤的色散和损耗.  相似文献   
5.
6.
影响量子点荧光特性除了量子点尺寸因素外,其溶液浓度也会对其荧光特性起很重要的作用。但到目前,还未见到有关量子点 CdSe/ZnS 在溶液中浓度对其荧光影响的详细报道。为了掌握影响量子点CdSe/ZnS荧光特性的因素及其物理机制,利用紫外-可见吸收光谱仪和荧光光谱仪测量了尺寸为4 nm的量子点CdSe/ZnS在氯仿中不同浓度下的吸收光谱和荧光光谱,并侧重研究了量子点CdSe/ZnS的浓度对其发光特性的影响并分析了其物理机制。结果表明量子点对光谱的吸收随其浓度的增加而增大,但其发光却具有一个最佳浓度2μmol·L-1。当量子点的浓度>2μmol·L-1时,量子点的荧光强度随着量子点浓度的增加而降低,而当量子点的浓度<2μmol·L-1时,量子点的发光强度则随其浓度的降低而降低。其原因主要有两个:(1)荧光猝灭效应;(2)荧光发射与光吸收的竞争效应。当量子点的浓度>2μmol·L-1时,由于量子点之间相距太近(仅为94 nm)而引起了荧光猝灭效应,且其荧光猝灭效应随量子点间距的减小而增大,且因为吸收过大,导致受激的量子点并未增加,因此,其荧光随浓度的增加而降低。而当量子点的浓度<2μmol·L-1时,因为量子点之间的距离足够大,不再引起荧光猝灭效应,其荧光强度取决于单位体积内的量子点的个数,单位体积内量子点的个数越多,其发光强度越强。因此其发光强度随量子点溶液的浓度降低而降低。  相似文献   
7.
利用超快光谱技术系统研究了在丁胺包裹的CdSe量子点敏化的TiO2纳米晶薄膜起始时刻界面间电子转移动力学。与之前的报道不同,该实验结果表明:CdSe量子点经过表面修饰后,两相电子注入机制--热电子和冷电子注入得以被证实,即:电子能分别从CdSe量子点导带中高的振动能级和导带底转移到TiO2的导带。该机制详细描绘了电子在纳米界面间转移的图景。进一步研究发现:热电子注入的电子耦合强度(3.6±0.1 meV)比弛豫后的基态电子注入高两个数量级,基于Marcus理论,伴随着0.083 eV的重组能,冷电子注入的耦合强度值为~50 μeV。  相似文献   
8.
《Current Applied Physics》2014,14(6):881-885
We report on the fabrication of wheat-like CdSe/CdTe thin film heterojunction solar cells made using a simple electrochemical deposition method and close-spaced sublimation technology on indium tin oxide (ITO) substrates. Structural, optical, and electrical properties of the wheat-like CdSe/CdTe thin film junctions were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive spectrometry (EDS), ultraviolet–visible (UV–vis) absorption spectrum and Keithley 2400 analysis. A significant red-shift of the absorption edge is observed in this heterojunction. The heterostructure is composed of the wheat-like CdSe array and CdTe thin film, showing optical properties typical of type II heterostructures that are suited for photovoltaic applications. A photocurrent density of 8.34 mA/cm2 has been obtained under visible light illumination of 100 mW/cm2. This study demonstrates that the electrochemical deposition and the close-spaced sublimation technology, which are easily adapted to other chemical systems, are promising techniques for large-scale fabrication of low-cost heterojunction solar cells.  相似文献   
9.
CdSxSe1 − x quantum dots received considerable attention in academic studies and as cut‐off filters and indirect‐gap semiconductors. These later compounds have also been used for artistic purposes to produce colored glass since the 1920s thanks to their bright colors. Because non‐invasive conditions are now mandatory when considering objects belonging to the cultural heritage, the use of Raman and fiber optics reflectance spectroscopy has been identified as potential ones to obtain information about the nanostructure of six samples of historical glass produced between the late 1920s and modern days. The average elemental composition of the nanocrystals has been deduced processing both optical and vibrational data, and the result arising has been compared taking into account the several factors affecting the experimental results. The diffusion of zinc inside the nanocrystals has also been questioned by the shift caused on the CdS‐ and CdSe‐like phonon band wavenumber and on the absorption edge wavelength. An investigation of the size distribution and crystallinity of CdSxSe1 − x nanoparticles has been also performed considering those parameters that are mainly influenced by the disorder of the system, such as the extent of the Urbach tail and the Raman bandwidth. Thanks to the results obtained, discrimination between the more recent glass and the older Art Nouveau ones has been verified, leading to the identification of a useful analytical protocol for conservation purposes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quantum dots‐based competitive fluoroimmunoassay with magnetic core/shell Fe3O4/Au nanoparticles (MCFN) as solid carriers. Hydrocortisone antigen was labeled with the synthesized core/shell CdSe/CdS quantum dots (QDs) to form the antigen‐QDs conjugate. Meanwhile, hydrocortisone antibody was incubated with MCFN and the immobilized antibody was obtained. The immobilized antibody was then mixed sequentially with hydrocortisone and a slightly excess amount of the QDs‐labeled hydrocortisone antigen, allowing their competition for binding with the antibody immobilized on MCFN. The bound hydrocortisone and the antigen‐QDs conjugates on MCFN were removed subsequently after the mixture was applied to a magnetic force. The analyte concentration was obtained by measuring the fluorescence intensity of the unbound hydrocortisone antigen‐QDs conjugates. The proposed method was characterized by simplicity, rapidity, and high sensitivity with a wide linear working range of 0.5 to 15000 pg·mL?1 and a low detection limit of 0.5 pg·mL?1. The proposed method was successfully applied to the determination of hydrocortisone in cosmetics with satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号