首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdS quantum dots (QD) were capped with SiO2 via a microemulsion method for reducing the toxicity and imparting the biocompatibility of the CdS QD. The resulting CdS/SiO2 core/shell nanoparticles (NP) showed an improved water‐solubility and stability even in pH 4.0 acidic medium. Their fluorescence could be effectively enhanced in the presence of bovine serum albumin (BSA), due to the passivation effect of BSA on the surface of the NP. Furthermore, the concentration dependence of the fluorescence intensity obeys the Langmuir‐type binding isotherm. Thus a novel fluorescence enhancement method for the determination of BSA has been developed using the less‐toxic CdS/SiO2 core/shell NP as probes. Under optimal conditions, the linear range of calibration curve is 0.6–30 µg·mL?1, and the detection limit is 0.18 µg·mL?1. Compared with the water‐soluble CdS NP without SiO2 shell, the CdS/SiO2 core/shell NP exhibited slightly lower fluorescence response to BSA as well as other coexisting substances, such as heavy and transition metals, due to the inhibition of SiO2 shell. The proposed method was applied to the quantification of BSA in synthetic and serum samples with satisfactory results.  相似文献   

2.
A green and simple method was found to prepare CdS/CdSe co-sensitized photoelectrodes for the quantum dots sensitized solar cells application. All the assembly processes of CdS and CdSe quantum dots (QDs) were carried out in aqueous solution. CdS and CdSe QDs were sequentially assembled onto TiO2-nano-SiO2 hybrid film by two steps. Firstly, CdS QDs were deposited in situ over TiO2-nano-SiO2 hybrid film by the successive ionic layer adsorption and reaction (SILAR) process in water. Secondly, using 3-mercaptopropionic acid (3-MPA) as a linker molecule, the pre-prepared colloidal CdSe QDs (~3.0 nm) dissolved in water was linked onto the TiO2-nano-SiO2 hybrid film by the self-assembled monolayer technique with the mode of dropwise. The mode is simple and advantageous to saving materials and time. The results show that the photovoltaic performance of the cells is enhanced with the increase of SILAR cycles for TiO2-nano-SiO2/CdS photoelectrode. The power conversion efficiency of 2.15 % was achieved using the co-sensitization photoelectrode prepared by using 6 SILAR cycles of CdS plus CdSe (TiO2-nano-SiO2/CdS(6)/CdSe) under the illumination of one sun (AM1.5, 100 mW/cm2).  相似文献   

3.
A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor, 5‐CT . While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the 5‐CT triplet (with rates of 5.91±0.60 ns−1 and 1.03±0.09 ns−1 respectively), ultrafast hole transfer occurs only from PbS QDs to 5‐CT . Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the 5‐CT triplet and thus enhances TET from 5‐CT to the rubrene emitter, further bolstering the upconverison QY.  相似文献   

4.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

5.
合成了CdSe/ZnS核壳结构量子点(QDs), 将其作为光敏剂吸附在TiO2纳米晶薄膜上, 组装成量子点敏化太阳能电池(QDSSCs), 从电子注入速率和电池性能两方面对QDSSCs进行了表征. 为了定量研究ZnS层包覆对电子注入的影响, 运用飞秒瞬态光谱技术, 测试了包覆ZnS前后, CdSe-TiO2体系的电子注入速率. 实验测得ZnS包覆前后电子注入速率分别为7.14×1011s-1和2.38×10-11s-1, 可以看出包覆后电子注入速率明显降低, 仅为包覆前的1/3. 电池器件J-V性能测试表明, ZnS作为绝缘层包覆在CdSe的表面有效提高了QDSSCs的填充因子和稳定性, 但同时也导致了效率的降低. 上述结果说明了电子注入速率的降低是导致电池电流和效率下降的重要原因, 为今后优化核壳结构QDSSCs的电流和效率提供了依据.  相似文献   

6.
The detection of human bone morphogenic protein-7 (BMP-7) was achieved using a sequential injection immunoassay (SIIA) system. The SIIA system is based on the binding between BMP-7 and anti-human BMP-7 (AbBMP7)–CdSe/ZnS quantum dot (QD) conjugates immobilized onto a glass disk or an optical fiber, using fluorescence detection at excitation and emission wavelengths of 470 nm and 580 nm, respectively. The AbBMP7–QD conjugates were prepared by conjugating anti-human BMP-7 antibody (AbBMP7) to hydrophilic CdSe/ZnS core/shell quantum dots (QDs). The SIIA system was fully automated using software written in the LabVIEW™ development environment. The analytical performance of the SIIA system was characterized with a number of variables such as carrier flow rate and elution buffer. Under partially optimized operating conditions, the SIIA system had a linear calibration graph at up to 10.0 ng mL−1 BMP-7 (R2 ≥ 0.975) and a sample frequency of two samples per hour. The SIIA system with an optical fiber immunosensor was used to detect and quantify BMP-7 in spiked real samples obtained from a biological process with recoveries in the range of 95–102%.  相似文献   

7.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

8.
A rapid and ultrasensitive electrochemiluminescence (ECL) competitive immunoassay based on CdSe quantum dots (QDs) and the shorter chain as possible (cysteamine and glutaraldehyde) has been designed for the detection of salbutamol (SAL). Cysteamine and glutaraldehyde made coating antigen immobilize well on the gold electrode surface through the reaction between functional groups, which brought about the simplicity of the immunosensor to some extent. Transmission electron microscopy image, dynamic light scattering, photoluminescence, ultraviolet‐visible absorption and electrochemical impedance spectra were used to characterize the prepared CdSe QDs and the cysteamine/glutaraldehyde/Ovalbumin‐SAL/anti‐SAL‐QDs immunosensor. In the air‐saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 9.0), a strong ECL emission of QDs can be observed which depended linearly on the logarithm of the salbutamol concentration with a wide range from 0.05 ng mL?1 to 100 ng mL?1, and a detection limit of 0.0056 ng mL?1. The sensitivity, repeatability, and specificity of the ECL immunosensor have been evaluated. The sensor has been applied to real samples with satisfactory results. This work will open new ways of detecting food additive residue based on QDs ECL in immunoassays.  相似文献   

9.
Herein, we report the synthesis of aqueous CdTe/CdSe type‐II core–shell quantum dots (QDs) in which 3‐mercaptopropionic acid is used as the capping agent. The CdTe QDs and CdTe/CdSe core–shell QDs are characterized by X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM), steady‐state absorption, and emission spectroscopy. A red shift in the steady‐state absorption and emission bands is observed with increasing CdSe shell thickness over CdTe QDs. The XRD pattern indicates that the peaks are shifted to higher angles after growth of the CdSe shell on the CdTe QDs. HR‐TEM images of both CdTe and CdTe/CdSe QDs indicate that the particles are spherical, with a good shape homogeneity, and that the particle size increases by about 2 nm after shell formation. In the time‐resolved emission studies, we observe that the average emission lifetime (τav) increases to 23.5 ns for CdTe/CdSe (for the thickest shell) as compared to CdTe QDs (τav=12 ns). The twofold increment in the average emission lifetime indicates an efficient charge separation in type‐II CdTe/CdSe core–shell QDs. Transient absorption studies suggest that both the carrier cooling and the charge‐transfer dynamics are affected by the presence of traps in the CdTe QDs and CdTe/CdSe core–shell QDs. Carrier quenching experiments indicate that hole traps strongly affect the carrier cooling dynamics in CdTe/CdSe core–shell QDs.  相似文献   

10.
在水相合成的CdTe量子点的体系中通过分批次加入新鲜配制的NaHSe和CdCl2溶液,制备出了CdSe包覆层数不同的CdTe/CdSe核壳量子点,并着重考察了CdSe包覆层数对CdTe/CdSe核壳量子点的光学特性以及微观结构的影响.与CdTe量子点相比,CdSe单层包覆的CdTe/CdSe核壳量子点的吸收峰和荧光发射峰出现明显红移;随着CdSe包覆层数的增多,CdTe/CdSe核壳量子点吸收光谱的覆盖范围向长波方向扩展,荧光发射峰强度逐步下降,荧光寿命大幅延长,体现出Ⅱ型核壳量子点的特征.X射线衍射(XRD)分析表明,随着CdSe包覆层数的增多,CdTe/CdSe核壳量子点的粉末衍射峰由CdTe衍射峰位置逐步向CdSe衍射峰位置靠近.CdTe/CdSe核壳量子点因其延伸到近红外区域的宽吸收特性致使其在太阳电池领域具有重要的应用前景.  相似文献   

11.
A new design for a quasi‐solid‐state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor–acceptor architecture (TiO2/CdS/CdSe/ZnS‐LY/S2?‐multi‐walled carbon nanotubes) show a maximum incident photon‐to‐current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru‐dye free FRET‐enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor‐only cells. The FRET‐enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.  相似文献   

12.
Semiconductor nanocrystal quantum dots have been the subject of extensive investigations in different areas of science and technology in the past years. In particular, there are few studies of magic-sized quantum dots (MSQDs), even though they exhibit features such as extremely small size, fluorescence quantum efficiency, molar absorptivity greater than traditional QDs, and highly stable luminescence in HeLa cell cultures, thereby enabling monitoring of biological or chemical processes. The present study investigated the electrochemical behavior of free CdSe/CdS MSQDs using glassy carbon electrode and CdSe/CdS MSQDs immobilized on a gold electrode modified with a self-assembled cyclodextrin monolayer. The MSQDs showed two peaks in aprotic medium. The functionalized film modifier was prepared and characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy using ferricyanide ions as a redox probe. The prepared modified electrode exhibited a stable behavior. The proposed method was successfully applied to encapsulation studies of mangiferin, a natural antioxidant compound, and cyclodextrin associated with the quantum dot, and the response was compared with that of the modified electrode without QD. The fluorescence study revealed that CdSe/CdS quantum dots emit blue light when excited by an optical source of wavelength of 350 nm and a significant increase in fluorescence and absorbance intensity is observed from the core-shell CdSe/CdS MSQDs when quantities of mangiferin are added to the solution containing thiolated cyclodextrin. CdSe/CdS MSQDs are optically and electrochemically sensitive and can be used for the detection and interaction of compounds encapsulated in cyclodextrin.  相似文献   

13.
Sugar chains are important molecules in cellular recognition and signaling, and quantum dots (QDs) are a very powerful tool for in vitro and in vivo imaging. Herein, we report the preparation of stable sugar‐chain‐immobilized fluorescent nanoparticles (SFNPs) and their application to the analysis of sugar‐chain–protein interactions and cellular imaging. SFNPs were easily prepared by mixing CdTe/CdS core/shell QDs with our previously developed sugar‐chain–ligand conjugates. The obtained SFNPs were very stable and could be stored for several months. In the binding analysis, β‐galactose‐ and α‐glucose‐immobilized SFNPs were specifically interacted with Ricinus communis agglutinin I and concanavalin A, respectively, and made into aggregates. The binding interaction was detected visually, fluorescently, or both. In the experiment for cellular imaging, it was found that SFNPs were predominantly taken up by human hepatocyto carcinoma cells (HepG2), suggesting the possible usage of our designed SFNPs for various biochemical analyses of sugar chains.  相似文献   

14.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

15.
Based on CdTe/CdS quantum dots (CdTe/CdS QDs) fluorescence (FL) reversible control, a new and sensitive FL sensor for determination of anthraquinone (AQ) anticancer drugs (adriamycin and daunorubicin) and herring sperm DNA (hsDNA) was developed. Under the experimental conditions, FL of CdTe/CdS QDs can be effectively quenched by AQ anticancer drugs due to the binding of AQ anticancer drugs on the surface of CdTe/CdS QDs and photoinduced electron transfer (PET) process from CdTe/CdS QDs to AQ anticancer drugs. Addition of hsDNA afterwards brought the restoration of CdTe/CdS QDs FL intensity, as AQ anticancer drugs peeled off from the surface of CdTe/CdS QDs and embedded into hsDNA double helix structure. The liner ranges and the detection limits of FL quenching methods for two AQ anticancer drugs were 0.33-9 μg mL−1 and 0.09 μg mL−1 for ADM and 0.15-9 μg mL−1 and 0.04 μg mL−1 for DNR, respectively. The restored FL intensity was proportional to concentration of hsDNA in the range of 1.38-28 μg mL−1and the detection limit for hsDNA was 0.41 μg mL−1. It was applied to the determination of AQ anticancer drugs in human serum and urine samples with satisfactory results. The reaction mechanism of CdTe/CdS QDs FL reversible control was studied.  相似文献   

16.
We have developed a method for the determination of microcystin-leucine-arginine (MC-LR) in water samples that is based on the quenching of the fluorescence of bioconjugates between CdSe/CdS quantum dots (QDs) and the respective antibody after binding of MC-LR. The core-shell CdSe/CdS QDs were modified with 2-mercaptoacetic acid to improve water solubility while their high quantum yields were preserved. Monoclonal MC-LR antibody was then covalently bioconjugated to the QDs. It was found that the fluorescence intensity of the bioconjugates was quenched in the presence of MC-LR. A linear relationship exists between the extent of quenching and the concentration of MC-LR. Parameters affecting the quenching were investigated and optimized. The limit of detection is 6.9?×?10?11 mol L?1 (3σ). The method was successfully applied to the determination of MC-LR in water samples.
Figure
Bioconjugates of CdSe/CdS quantum dots and anti-microcystin-leucine-arginine (MC-LR) antibody were prepared through step A to C. Their fluorescence intensity was quenched linearly with addition of MC-LR at different concentrations (step D). A method for determination of MC-LR was thus established and it was simple, sensitive and specific with low-cost instrumentation  相似文献   

17.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

18.
The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non‐radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd1?xZnxSe1?ySy/ZnS core/graded shell–shell QDs with suppressed re‐absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re‐absorption and a constrained Stokes shift, the as‐synthesized CdSe/Cd1?xZnxSe1?ySy/ZnS QDs exhibited the suppressed re‐absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift‐engineered QDs with suppressed re‐absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity‐time symmetry materials and devices.  相似文献   

19.
PAMAM树形分子模板法原位合成发紫光CdS量子点的研究   总被引:1,自引:0,他引:1  
半导体纳米粒子由于具有明显的量子尺寸效应,被形象地称为量子点(quantum dots)。量子点的发射波长可以通过改变粒子尺寸进行调节,并且由于是多电子体系发光,其荧光寿命较长,量子产率和光学稳定性能均优于荧光染料,可望成为新一代的发光材料和荧光探针[1,2]。为此,制备尺寸可控、荧光量子产率高、水溶性的半导体量子点成为很多科研人员的研究目标。树形分子科学的发展,为纳米材料的合成开辟了一条崭新的道路。人们利用树形分子独特的结构特征,将其作为纳米反应器和纳米容器,合成了尺寸均匀、分散性好的Ag、Cu、Pt、Pd等纳米簇[3 ̄7]。1998…  相似文献   

20.
以CdCl2和Te粉为原料,在水相中合成了CdTe量子点核;通过外延生长在CdTe量子点核上包覆一层CdSe量子点,得到具有良好荧光性能的CdTe/CdSe核壳量子点;采用X射线衍射仪、透射电镜、高分辨透射电镜分析了不同反应条件下合成的CdTe/CdSe核壳量子点的晶体结构和微观结构,并对其进行了荧光光谱等测试和指纹显现分析.结果表明,合成的CdTe和CdTe/CdSe量子点粒径在3~5nm之间,粒径分布窄,水分散性良好;可以通过控制反应时间和Te/Se比等得到在500~700nm显示荧光发射峰的CdTe/CdSe核壳量子点.此外,核壳CdTe/CdSe量子点可以有效地和指纹物质结合,可应用于对铝合金油潜指纹的鉴别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号