首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   15篇
  国内免费   3篇
力学   2篇
综合类   2篇
数学   74篇
物理学   21篇
  2020年   10篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   15篇
  2011年   15篇
  2010年   3篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1992年   2篇
  1989年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
In this paper, we establish some criteria for boundedness, stability properties, and separation of solutions of autonomous nonlinear nabla Riemann-Liouville scalar fractional difference equations. To derive these results, we prove the variation of constants formula for nabla Riemann-Liouville fractional difference equations.  相似文献   
2.
A discretization algorithm is proposed by Haar wavelet approximation theory for the fractional order integral. In this paper, the integration time is divided into two parts, one presents the effect of the past sampled data, calculated by the iterative method, and the other presents the effect of the recent sampled data at a fixed time interval, calculated by the Haar wavelet. This method can reduce the amount of the stored data effectively and be applied to the design of discrete-time fractional order PID controllers. Finally, several numerical examples and simulation results are given to illustrate the validity of this discretization algorithm.  相似文献   
3.
韩仁基  蒋威 《数学研究》2011,44(2):128-138
讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算子是Riemann-Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解.  相似文献   
4.
In this Letter, by introducing He's polynomials in the correct functional, we propose a new fractional variational iteration method to solve nonlinear time-fractional partial differential equations involving Jumarie's modified Riemann-Liouville derivative. Several examples have been solved to illustrate the proposed method is quite effective and convenient for solving kinds of nonlinear fractional order problems.  相似文献   
5.
The paper presents a new fractional integration, which generalizes the Riemann-Liouville and Hadamard fractional integrals into a single form. Conditions are given for such a fractional integration operator to be bounded in an extended Lebesgue measurable space. Semigroup property for the above operator is also proved. We give a general definition of the fractional derivatives and give some examples.  相似文献   
6.
In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely the space-time fractional Zakharov–Kuznetsov(ZK) and modified Zakharov–Kuznetsov(m ZK) equations by using fractional sub-equation method. As a result, new types of exact analytical solutions are obtained. The obtained results are shown graphically. Here the fractional derivative is described in the Jumarie's modified Riemann–Liouville sense.  相似文献   
7.
In this paper, a new numerical algorithm for solving the time fractional Fokker-Planck equation is proposed. The analysis of local truncation error and the stability of this method are investigated. Theoretical analysis and numerical experiments show that the proposed method has higher order of accuracy for solving the time fractional Fokker-Planck equation.  相似文献   
8.
建立了一个关于Riemann-Liouville分数次积分的恒等式,利用此恒等式,得到了一些函数为可微且s-凸映射的关于分数次积分的新Hermite-Hadamard型积分不等式,并且对于可微的s-凹函数也得到一些新的结果.文中的新结果推广了部分已有研究的结论.最后给出了一个应用实例.  相似文献   
9.
In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann-Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method.  相似文献   
10.
In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada–Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号