首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a new concept of derivative with respect to an arbitrary kernel function. Several properties related to this new operator, like inversion rules and integration by parts, are studied. In particular, we introduce the notion of conjugate kernels, which will be useful to guaranty that the proposed derivative operator admits a right inverse. The proposed concept includes as special cases Riemann‐Liouville fractional derivatives, Hadamard fractional derivatives, and many other fractional operators. Moreover, using our concept, new fractional operators involving certain special functions are introduced, and some of their properties are studied. Finally, an existence result for a boundary value problem involving the introduced derivative operator is proved.  相似文献   

2.
In this article, we present three types of Caputo–Hadamard derivatives of variable fractional order and study the relations between them. An approximation formula for each fractional operator, using integer-order derivatives only, is obtained and an estimation for the error is given. At the end, we compare the exact fractional derivative of a concrete example with some numerical approximations.  相似文献   

3.
The paper provides the fractional integrals and derivatives of the Riemann‐Liouville and Caputo type for the five kinds of radial basis functions, including the Powers, Gaussian, Multiquadric, Matérn, and Thin‐plate splines, in one dimension. It allows to use high‐order numerical methods for solving fractional differential equations. The results are tested by solving two test problems. The first test case focuses on the discretization of the fractional differential operator while the second considers the solution of a fractional order differential equation.  相似文献   

4.
We study the relationship between the solutions of abstract differential equations with fractional derivatives and their stability with respect to the perturbation by a bounded operator. Besides, we obtain representations for the solution of an inhomogeneous equation and for an equation containing a fractional power of the generator of a cosine operator function.  相似文献   

5.
In this paper, high-order numerical methods for time-Caputo and space-Riesz fractional Bloch-Torrey equations in one- and two-dimensional space are constructed, where the second-order backward fractional difference operator and the sixth-order fractional-compact difference operator are applied to approximate the time and space fractional derivatives, respectively. The stability and convergence of the methods are analyzed and it is shown that the convergence orders are higher than the earlier work. Finally, some numerical experiments are presented to demonstrate the effectiveness of the methods and confirm our theoretical results.  相似文献   

6.
We consider the solvability of fractional differential equations involving the Riesz fractional derivative. Our approach basically relies on the reduction of the problem considered to the equivalent nonlinear mixed Volterra and Cauchy-type singular integral equation and on the theory of fractional calculus. By establishing a compactness property of the Riemann–Liouville fractional integral operator on Lebesgue spaces and using the well-known Krasnoselskii's fixed point theorem, an existence of at least one solution is gleaned. An example is finally included to show the applicability of the theory.  相似文献   

7.
In this paper, we focus on maximum principles of a time–space fractional diffusion equation. Maximum principles for classical solution and weak solution are all obtained by using properties of the time fractional derivative operator and the fractional Laplace operator. We deduce maximum principles for a full fractional diffusion equation, other than time-fractional and spatial-integer order diffusion equations.  相似文献   

8.
Here we present univariate Sobolev-type fractional inequalities involving fractional derivatives of Canavati, Riemann–Liouville and Caputo types. The results are general L p inequalities forward and converse on a closed interval. We give an application to a fractional ODE. We present also the mean Sobolev-type fractional inequalities.  相似文献   

9.
The main motive of this article is to study the recently developed Atangana-Baleanu Caputo (ABC) fractional operator that is obtained by replacing the classical singular kernel by Mittag-Leffler kernel in the definition of the fractional differential operator. We investigate a novel numerical method for the nonlinear two-dimensional cable equation in which time-fractional derivative is of Mittag-Leffler kernel type. First, we derive an approximation formula of the fractional-order ABC derivative of a function tk using a numerical integration scheme. Using this approximation formula and some properties of shifted Legendre polynomials, we derived the operational matrix of ABC derivative. In the author of knowledge, this operational matrix of ABC derivative is derived the first time. We have shown the efficiency of this newly derived operational matrix by taking one example. Then we solved a new class of fractional partial differential equations (FPDEs) by the implementation of this ABC operational matrix. The two-dimensional model of the time-fractional model of the cable equation is solved and investigated by this method. We have shown the effectiveness and validity of our proposed method by giving the solution of some numerical examples of the two-dimensional fractional cable equation. We compare our obtained numerical results with the analytical results, and we conclude that our proposed numerical method is feasible and the accuracy can be seen by error tables. We see that the accuracy is so good. This method will be very useful to investigate a different type of model that have Mittag-Leffler fractional derivative.  相似文献   

10.
Space-time fractional derivative operators   总被引:2,自引:0,他引:2  
Evolution equations for anomalous diffusion employ fractional derivatives in space and time. Linkage between the space-time variables leads to a new type of fractional derivative operator. This paper develops the mathematical foundations of those operators.

  相似文献   


11.
In this article we study the fractional smooth general singular integral operators on the real line, regarding their convergence to the unit operator with fractional rates in the uniform norm. The related established inequalities involve the higher order moduli of smoothness of the associated right and left Caputo fractional derivatives of the engaged function. Furthermore we produce a fractional Voronovskaya type result giving the fractional asymptotic expansion of the basic error of our approximation.We finish with applications to fractional trigonometric singular integral operators. Our operators are not in general positive.  相似文献   

12.
The purpose of the current study is to investigate IBVP for spatial-time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(−Δ)β. A new Hadamard fractional extremum principle is established. Based on the new result, a Hadamard fractional maximum principle is also proposed. Furthermore, the maximum principle is applied to linear and nonlinear Hadamard fractional equations to obtain the uniqueness and continuous dependence of the solution of the IBVP at hand.  相似文献   

13.
The pivotal aim of the present study is to employ fractional natural decomposition method (FNDM) to find the solution for a nonlinear system arising in thermoelasticity. The considered coupled system is generalised many physical phenomena associated with the material with elastic characters and its temperature and also which is called a Cauchy problem. We consider the coupled system by incorporating the Caputo fractional operator and investigate three distinct cases for different initial values to illustrate the applicability and efficiency of the FNDM. With respect to fractional order, we capture the behaviour of the achieved solution cited in three different cases and exemplified with the aid of 2D and 3D plots for the particular value of the parameters in the model. Moreover, some interesting behaviours of the projected model are confirms the prominence of the employed fractional operator while analysing the nonlinear coupled equations exemplifying real-world problems and also shows the capability of the considered algorithm.  相似文献   

14.
An inverse problem of determining a time‐dependent source term from the total energy measurement of the system (the over‐specified condition) for a space‐time fractional diffusion equation is considered. The space‐time fractional diffusion equation is obtained from classical diffusion equation by replacing time derivative with fractional‐order time derivative and Sturm‐Liouville operator by fractional‐order Sturm‐Liouville operator. The existence and uniqueness results are proved by using eigenfunction expansion method. Several special cases are discussed, and particular examples are provided.  相似文献   

15.
In this paper, we prove the existence and uniqueness of positive solutions for a system of multi-order fractional differential equations. The system is used to represent constitutive relation for viscoelastic model of fractional differential equa-tions. Our results are based on the fixed point theorems of increasing operator and the cone theory, some illustrative examples are also presented.  相似文献   

16.
Ignat'ev  M. Yu. 《Mathematical Notes》2003,73(1-2):192-201
We establish the similarity between certain Volterra integral operators and the Riemann--Liouville fractional integration operator as well as the existence of a triangular transformation operator for integro-differential equations of fractional order. The results obtained are consistent with similar results for the case of integer order.  相似文献   

17.
By the definition of the higher-order fractional derivative, we explore the central properties of the higher-order Caputo-Fabrizio fractional derivative and integral with a weighted term. Furthermore, by dint of Schaefer''s fixed point theorem, $\alpha$-$\psi$-Contraction theorem, etc., we establish the existence of solutions for nonlinear equations. We also give three examples to make our main conclusion clear.  相似文献   

18.
We study the well-posedness of the equations with fractional derivative D^αu(t) = Au(t) + f(t),0≤ t ≤ 2π, where A is a closed operator in a Banach space X, α 〉 0 and D^α is the fractional derivative in the sense of Weyl. Using known results on LP-multipliers, we give necessary and/or sufficient conditions for the LP-well-posedness of this problem. The conditions we give involve the resolvent of A and the Rademacher boundedness. Corresponding results on the well-posedness of this problem in periodic Besov spaces, periodic Triebel-Lizorkin spaces and periodic Hardy spaces are also obtained.  相似文献   

19.
Here the broad study is depending on random integro-differential equations (RIDE) of arbitrary order. The fractional order is in terms of $\psi$-Hilfer fractional operator. This work reveals the dynamical behaviour such as existence, uniqueness and stability solutions for RIDE involving fractional order. Thus initial value problem (IVP), boundary value problem (BVP), impulsive effect and nonlocal conditions are taken in account to prove the results.  相似文献   

20.
We study the action of composition operators on Sobolev spaces of analytic functions having fractional derivatives in some weighted Bergman space or Hardy space on the unit disk. Criteria for when such operators are bounded or compact are given. In particular, we find the precise range of orders of fractional derivatives for which all composition operators are bounded on such spaces. Sharp results about boundedness and compactness of a composition operator are also given when the inducing map is polygonal.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号