首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1081篇
  免费   155篇
  国内免费   38篇
化学   1244篇
力学   6篇
综合类   1篇
物理学   23篇
  2024年   1篇
  2023年   40篇
  2022年   13篇
  2021年   39篇
  2020年   40篇
  2019年   52篇
  2018年   53篇
  2017年   65篇
  2016年   86篇
  2015年   65篇
  2014年   70篇
  2013年   126篇
  2012年   59篇
  2011年   63篇
  2010年   63篇
  2009年   65篇
  2008年   64篇
  2007年   46篇
  2006年   44篇
  2005年   44篇
  2004年   53篇
  2003年   46篇
  2002年   33篇
  2001年   13篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1274条查询结果,搜索用时 15 毫秒
1.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   
2.
Aqueous self-assembly of short peptides has attracted growing attention for the construction of supramolecular materials for various bioapplications. Herein, we describe how the thermolysin-assisted biocatalytic construction of a dipeptide hydrazide from an N-protected amino acid and an amino acid hydrazide leads to the formation of thermally stable supramolecular hydrogels. In addition, we demonstrate the post-assembly modification of the supramolecular architectures constructed in situ tethering hydrazide groups as a chemical handle by means of fluorescence imaging.  相似文献   
3.
4.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
5.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
6.
Synthetic and biological gels undergo a sharp volume phase transition when subjected to a variety of environmental changes. Water and ion dynamics within swollen and compact phases are critical for understanding fundamental concepts in cellular (specifically neuronal) biophysics, for models of bound, free, or ordered water in complex environments; and for practical applications such as the design of gels for drug release, biomimetics, sensors, or actuators. In this work, we find, for the first time, basic physical parameters that shed light on the interaction of gels with water and electrolytes, across a volume phase transition. Water within a gel can be separated into bound and free populations with high exchange rate. We show that free water dynamics in compact gels are the same as those in pure water. Bound water was found to comprise a single layer around the polymers in both phases, with a correlation time three orders of magnitude higher than that of free water. Most importantly, salt‐induced phase transition was found to be different from a standard coil‐globule transition (e.g., temperature‐induced), with no rejection of bound water as the gel compacts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1620–1628  相似文献   
7.
Nowadays, sustainable materials are receiving significant attention due to the fact that they will be crucial for the development of the next generation of products and devices. In the present work, hydrogels have been successfully synthesized using lignin which is non-valorized biopolymer from the paper industry. Hydrogels were prepared via crosslinking with Poly(ethylene) glycol diglycidyl ether (PEGDGE). Different crosslinker ratios were used to determine their influence on the structural and chemical properties of the resulting hydrogels. It has been found that pore size was reduced by increasing crosslinker amount. The greater crosslinking density increased the swelling capacity of the hydrogels due to the presence of more hydrophilic groups in the hydrogel network. Paracetamol release test showed higher drug diffusion for hydrogels produced with a ratio lignin:PEGDGE 1:1. The obtained results demonstrate that the proposed approach is a promising route to utilize lignocellulose waste for producing porous materials for advanced biomedical applications in the pharmacy industry.  相似文献   
8.
A number of synthetic hydrogels suffer from low mechanical strength. Despite of the recent advances in the fabrication of tough hydrogels, it is still a great challenge to simultaneously construct high stretchability, and self-adhesive and self-healing capability in a hydrogel. Herein, a new type of double network hydrogel was prepared based on irreversible cross-linking of polyacrylamide chains and Schiff-base reversible cross-linking between glycidyl methacrylate-grafted ethylenediamine and oxidized sodium alginate (OSA). The combination of both cross-linkings and their synergistic effect provided a novel hydrogel with high strength, stretchable, rapid self-healing, and self-adhesiveness to different material. Besides, the hydrogels with diverse OSA content could maintain their original shapes after loading–unloading tensile test. The resulting hydrogel has a great potential in various fields for supporting and load-bearing substance.  相似文献   
9.
Rechargeable aqueous zinc-ion batteries (ZIBs) have garnered tremendous attention in the field of next energy storage devices due to their high safety, low cost, abundant resources, and eco-friendliness. As an important component of the zinc-ion battery, the electrolyte plays a vital role in the electrochemical properties, since it will provide a pathway for the migrations of the zinc ions between the cathode and anode, and determine the ionic conductivity, electrochemically stable potential window, and reaction mechanism. In this Minireview, a brief introduction of electrochemical principles of the aqueous ZIBs is discussed and the recent advances of various aqueous electrolytes for ZIBs, including liquid, gel, and multifunctional hydrogel electrolytes are also summarized. Furthermore, the remaining challenges and future directions of electrolytes in aqueous ZIBs are also discussed, which could provide clues for the following development.  相似文献   
10.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号