首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   5篇
化学   52篇
晶体学   2篇
数学   8篇
物理学   8篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   7篇
  2017年   1篇
  2016年   10篇
  2015年   9篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   11篇
  2010年   2篇
  2009年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
In this research, Fe3O4/ZnO magnetic core-shell nanoparticles (Fe3O4/ZnO MCNPs) were synthesized through a green method using Petasites hybridus rhizome water extract as a reducing and stabilizing agent. The morphology and size of the Fe3O4/ZnO MCNPs was identified by X-ray diffraction, scanning electron microscopy, and Energy-dispersive X-ray spectroscopy (EDX) analysis. The catalytic activity of the Fe3O4/ZnO MCNPs was evaluated in the efficient and green preparation of pyran derivatives in excellent yield using three-component reactions of dimedone, aldehydes, and malononitrile in ethanol at room temperature. The ability of some synthesized compounds to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical was measured and the results proved this observation. Moreover, the antimicrobial activity of some synthesized compounds was proved by employing the disk diffusion test on Gram-positive and Gram-negative bacteria. The results for the disk diffusion test showed that compounds ( 4c, 4d, 4f and 4g ) prevented bacterial growth.  相似文献   
2.
During the last two decades, with the development of nanotechnology, various nanomaterials have been designed and generated. Among them, hybrid organic–inorganic nanoparticles as a particular immobilizing carrier of the catalyst active sites have shown an important contribution in the current research studies. This is due to the large area and loads of active sites. This prominent review is focused on the novel various exa about the immobilization of nanoparticles with organic compounds as versatile and efficient catalysts in organic syntheses.  相似文献   
3.
Nowadays, sustainable materials are receiving significant attention due to the fact that they will be crucial for the development of the next generation of products and devices. In the present work, hydrogels have been successfully synthesized using lignin which is non-valorized biopolymer from the paper industry. Hydrogels were prepared via crosslinking with Poly(ethylene) glycol diglycidyl ether (PEGDGE). Different crosslinker ratios were used to determine their influence on the structural and chemical properties of the resulting hydrogels. It has been found that pore size was reduced by increasing crosslinker amount. The greater crosslinking density increased the swelling capacity of the hydrogels due to the presence of more hydrophilic groups in the hydrogel network. Paracetamol release test showed higher drug diffusion for hydrogels produced with a ratio lignin:PEGDGE 1:1. The obtained results demonstrate that the proposed approach is a promising route to utilize lignocellulose waste for producing porous materials for advanced biomedical applications in the pharmacy industry.  相似文献   
4.
5.
To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.  相似文献   
6.
7.
8.
9.
Abbasi  Malek  Rezaei  Mahboubeh 《Positivity》2020,24(4):779-797
Positivity - This paper is devoted to the study of efficient elements for set-valued maps. We propose two new notions of relative weak $$\epsilon $$ -efficient element and strict relative weak...  相似文献   
10.
A rapid and simple procedure for the synthesis of the indenone derivatives, N-(1-oxo-1H-inden-2-yl)benzamides, via intramolecular Friedel-Crafts (IFC) reaction of (Z)-4-arylidene-2-phenyl-5(4)-oxazolones (azlactones) catalyzed by H3PW12O40 supported on neutral alumina under microwave irradiation has been developed. The reaction is straightforward and allows easy isolation of the product. The catalyst could be re-used up to four times after simple filtration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号