首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   152篇
  国内免费   696篇
化学   1690篇
晶体学   3篇
力学   83篇
综合类   9篇
数学   77篇
物理学   42篇
  2023年   7篇
  2022年   7篇
  2021年   22篇
  2020年   30篇
  2019年   35篇
  2018年   46篇
  2017年   34篇
  2016年   64篇
  2015年   56篇
  2014年   57篇
  2013年   116篇
  2012年   98篇
  2011年   111篇
  2010年   84篇
  2009年   75篇
  2008年   104篇
  2007年   101篇
  2006年   106篇
  2005年   108篇
  2004年   97篇
  2003年   116篇
  2002年   83篇
  2001年   69篇
  2000年   47篇
  1999年   42篇
  1998年   23篇
  1997年   19篇
  1996年   20篇
  1995年   36篇
  1994年   15篇
  1993年   25篇
  1992年   14篇
  1991年   13篇
  1990年   3篇
  1989年   10篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有1904条查询结果,搜索用时 20 毫秒
1.
This review gives an overview of the evolution of the technology of condensed mode cooling, primarily for the case of ethylene polymerization on supported catalysts in fluidized bed reactors. It is well known that this mode of heat removal is quite effective in allowing polyolefin manufacturers to increase significantly production rates. What is perhaps less well understood are all of the issues that, in addition to the effect of the latent heat of vaporization of injected liquid components, also have an impact on the rate of production and behavior of the reactor. However, the liquid components injected into the reactor can vaporize rapidly under full‐scale conditions, leaving behind several heavy components (with respect to ethylene) that have numerous effects on how the particles behave, on the reaction rate, and on fluidization, fouling, and other parameters related to reactor and process performance.  相似文献   
2.
CeO2-based catalysts are widely studied in catalysis fields. Developing one novel synthetic approach to increase the intimate contact between CeO2 and secondary species is of particular importance for enhancing catalytic activities. Herein, an interfacial reaction between metal–organic framework (MOF)-derived carbon and KMnO4 to synthesize CeO2−MnO2, in which carbon is derived from the pyrolysis of Ce-MOFs under an inert atmosphere, is described. The MOF-derived carbon is found to restrain the growth of CeO2 crystallites under a high calcination temperature and, more importantly, intimate contact within CeO2/C is conveyed to CeO2/MnO2 after the interfacial reaction; this is responsible for the high catalytic activity of CeO2−MnO2 towards CO oxidation.  相似文献   
3.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
4.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
A hexagonal porphyrin‐based porous organic polymer, namely, CPF‐1, was constructed by 3+2 ketoenamine condensation of the C2‐symmetric porphyrin diamine 5,15‐bis(4‐aminophenyl)‐10,20‐diphenylporphyrin and 1,3,5‐triformylphloroglucinol. This material exhibits permanent porosity and excellent thermal and chemical stability. CPF‐1 can be employed as a superior supporting substrate to immobilize Au nanoparticles (NPs) as a result of the strong interactions between Au NPs and the CPF support. An Au@CPF‐1 hybrid was synthesized by an interfacial solution infiltration method with NaBH4 as reducing agent. Au NPs (5 nm) grew on CPF‐1 and were distributed without aggregation. Moreover, Au@CPF‐1 exhibits superior catalytic activity compared to many other reported Au‐based catalysts for the reduction of 4‐nitrophenol in the presence of NaBH4. In addition, Au@CPF‐1 has excellent stability and recyclability, and it can be reused for three successive reaction cycles without loss of activity. The dense distribution of phenyl rings on the channel walls of the CPF support can reasonably be regarded as the active sites that adsorb the 4‐nitrophenol molecule through hydrogen‐bonding and C?H ??? π interactions, as was confirmed by the X‐ray structure of model compound DAPP‐Benz.  相似文献   
6.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
7.
In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single-molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme-induced compositional heterogeneity within membranes, where NR within liquid-ordered vs. liquid-disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid-lipid, lipid-protein, and lipid-dye interactions with single-molecule, nanoscale resolution.  相似文献   
8.
交互分类是解决数据复杂分类问题的主要手段之一。在现有的大多交互分类系统中,用户能准确识别数据类别,但在有些分类场景中,类别之间的顺序关系更容易被识别,为此,提出一种排序支持的交互数据分类算法。为提升交互分类精度,引入数据的顺序信息,为降低标记难度,提出候选样本推荐策略。另外,提出一种评估分类算法性能的可视化方法,用包含基本车况、交通违法记录、交通事故记录等信息的车辆数据集进行实验验证,将相关车辆分为高危车辆、中危车辆、低危车辆3类,算法的分类结果模型一致度达近98%,验证了方法的有效性。  相似文献   
9.
Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2O3 and SiO2. High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2O3 and SiO2. In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2O3 than those in Pd supported on SiO2, which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm−1) reacted first with oxygen in the case of CO-saturated Pd on Al2O3 and SiO2, which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.  相似文献   
10.
硅胶颗粒经过400℃高温活化后与四氯化硅在无水四氢呋喃溶剂中反应制得氯化硅胶。氯化硅胶再经乙酰胺修饰,制备得到表面含羰基和氨基的硅胶修饰体。此组装体具有良好的配位能力,能够与Fe3+进行配位,从而得到表面催化活性点均匀分布的负载型催化剂。该催化剂对甲醛催化氧化具有良好的催化性能,最高催化效率高达91.3%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号