首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

2.
Understanding the dynamic structural evolution of supported metal clusters under reaction conditions is crucial to develop structure reactivity relations. Here, we followed the structure of different size Rh clusters supported on Al2O3 using in situ/operando spectroscopy and ex situ aberration-corrected electron microscopy. We report a dynamic evolution of rhodium clusters into thermally stable isolated single atoms upon exposure to oxygen and during CO oxidation. Rh clusters partially disperse into single atoms at room temperature and the extent of dispersion increases as the Rh size decreases and as the reaction temperature increases. A strong correlation is found between the extent of dispersion and the CO oxidation kinetics. More importantly, dispersing Rh clusters into single atoms increases the activity at room temperature by more than two orders of magnitude due to the much lower activation energy on single atoms (40 vs. 130 kJ/mol). This work demonstrates that the structure and reactivity of small Rh clusters are very sensitive to the reaction environment.  相似文献   

3.
Behaviors of Pd structures with different thicknesses supported by Ta2O5/Ta in the reaction with oxygen and CO were studied by XPS and SEM. For the samples with a Pd thickness of 3 nm, a new low‐binding‐energy component appeared in the Pd 3d level upon O2 exposure at ~200 °C and was reduced in intensity after a subsequent CO exposure at 150 and 200 °C. The change in the Ta 4f state could also be found upon oxygen and CO exposure, indicating that both Pd and the Ta‐oxide substrate participate in the chemical reactions. For the sample with a higher Pd thickness, a positive shift in the Pd 3d level due to the oxidation of Pd was observed after exposure to O2 at a higher temperature (280 °C). A subsequent CO exposure at ~150 °C could not reduce Pd‐oxide layers, as confirmed by the unchanged Pd 3d spectra after CO treatment, i.e. Pd‐oxide was not reactive for CO oxidation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L-cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L-Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L-Cys)m nanoclusters supported on the reducible metal oxides CeO2, TiO2 and Fe3O4 exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand-protected clusters Pdn(L-Cys)m is observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand-protected Pd nanoclusters where the L-cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub-2-nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L-cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand-protected clusters. However, for the TiO2 and Fe3O4 supports, complete removal of the ligands from the Pdn(L-Cys)m clusters leads to a slight decrease in activity where the T100% CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2 and Fe3O4 supports appears to aid in efficient encapsulation of the bare Pdn nanoclusters within the mesoporous pores of the support.  相似文献   

5.
王丽  路小清  王维  詹望成  郭杨龙  郭耘 《催化学报》2018,39(9):1560-1567
CO催化氧化广泛应用于空气净化、机动车尾气治理和CO气体传感器中.在CO氧化催化剂设计与制备过程中,催化剂与使用环境密切相关.例如工业和机动车尾气净化需要在高温(200–600°C)下进行,而对于半密闭空间(隧道或者地下停车场)空气净化需要在室温和高相对湿度下进行.频繁冷启动导致半密闭空间CO浓度累积而超过排放控制标准,因此制备室温、高相对湿度下CO氧化催化剂是面临的重要问题之一.负载型Wacker催化剂对于CO低温催化氧化的研究一直受到广泛关注.环境中少量水的存在会促进负载型Wacker催化剂对CO的低温氧化性能,但随着水沉积量的增加,活性位点将被覆盖,并且Pd和Cu活性组分之间的紧密结构被破坏,从而导致催化剂的失活,即催化剂的稳定性变差.因此,为了提高催化剂在高相对湿度下的稳定性,利用二乙氧基二甲基硅烷对Al2O3载体进行硅烷化处理,以增加载体的疏水性,考察载体疏水改性对CO低温氧化过程中催化剂稳定性的影响.催化剂的稳定性测试结果表明,在0°C,100%相对湿度条件下,未改性催化剂在约20 h内CO转化率由81%下降到50%;载体硅烷化后制备的催化剂在反应进行150 h后,CO转化率仍保持在78%,即反应活性未见降低.由此表明催化剂载体经有机硅烷改性后,可显著增强催化剂在低温、高相对湿度下的稳定性.N2吸附/脱附和水吸附实验结果表明,载体硅烷化改性并未对催化剂的比表面积产生影响,但显著降低了催化剂上水沉积速度和沉积量,未改性催化剂的初始吸水速度是改性后催化剂的4倍,但改性后催化剂的饱和吸水率仅占未改性催化剂的1/3.X射线衍射结果表明,载体预处理后活性物种Cu2(OH)3Cl晶粒尺寸有所增加.氢气程序升温还原、X射线光电子能谱结果表明,载体硅烷化预处理改善了催化剂中Cu和Pd物种的化学分布及接触状态,增加了与Pd物种紧密接触的Cu物种的量,从而促进了Cu物种的还原.与此同时,载体硅烷化显著降低了催化剂表面Cl离子的浓度,从而影响到对CO吸附.为了进一步研究水与催化剂稳定性之间的关系,采用原位红外漫反射(In situ DRIFT)对催化剂进行表征.负载型Wacker催化剂对CO氧化反应机理为:Pd是CO氧化反应的活性中心,通过Pd和Cu物种之间的氧化还原循环来实现CO氧化,且Pd+比Pd2+具有更高的CO氧化性能.反应气氛中水的存在,有利于CO在Pd+上氧化、以及金属态Pd被Cu2+物种再氧化的过程,同时水也显著促进了催化剂表面碳酸盐的生成以及抑制了活性物种Pd+生成.与表面碳酸盐累积相比,水对于活性物种Pd+生成的抑制作用是导致催化剂活性降低的主要原因.  相似文献   

6.
We report on bimetallic FeRh clusters with a narrow size-distribution grown on graphene on Ir(111) as a carbon-supported model catalyst to promote low-temperature catalytic CO oxidation. By combining scanning tunneling microscopy with catalytic performance measurements, we reveal that Fe−Rh interfaces are active sites for oxygen activation and CO oxidation, especially at low temperatures. Rh core Fe shell clusters not only provide the active sites for the reaction, but also thermally stabilize surface Fe atoms towards coarsening compared with pure Fe clusters. Alternate isotope-labelled CO/O2 pulse experiments show opposite trends on preferential oxidation (PROX) performance because of surface hydroxyl species formation and competitive adsorption between CO and O2. The present results introduce a general strategy to stabilize metallic clusters and to reveal the reaction mechanisms on bimetallic structures for low-temperature catalytic CO oxidation as well as preferential oxidation.  相似文献   

7.
Thermo-progammed desorption and catalytic CO oxidation has been used to investigate the influence of the Pd/Al2O3 particle size on the CO adsorption and CO and O2 reactive sticking coefficient. Both CO molecule saturation density and reactive sticking coefficients increase with average particle diameter decreasing.  相似文献   

8.
Summary A new facile single-step synthetic route is reported for the preparation of Au/MOx/Al2O3 catalysts. The preparation method has the merit of facility but leads to not only the simultaneous load of both gold source and MOx precursor on Al2O3 support, but also the formation of Au/MOx/Al2O3 with high gold loading ratio, high dispersion and high activity for CO oxidation.  相似文献   

9.
The catalytic activity of low-percentage Co,Pd systems on ZSM-5, ERI, SiO2, and Al2O3 supports in the oxidation of CO was studied. The activity of bimetal-containing catalysts was shown to depend on the nature of the catalyst and the amount and ratio of their active components. According to the results of thermoprogrammed reduction with H2 (H2 TPR) and X-ray photoelectron spectroscopy (XPS) data, the metals are distributed as isolated cations or Coδ+-O-Pdδ+ clusters with cobalt and palladium cations surrounded by off-lattice oxygen in Co,Pd systems. The 0.8% Co,0.5% Pd-ZSM-5 bimetal catalysts were found to be more active due to the presence of clusters.  相似文献   

10.
Silca-supported Co3O4 (6 wt% as Co) catalysts were prepared by pore volume impregnation of ethanol or aqueous cobalt nitrate solutions, and calcined in vacuo to 300 °C. The catalytic performances of these catalysts for oxidation and hydrogenation of CO were examined. All Co3O4/SiO2 catalysts were found to be very active in catalyzing oxidation of CO to CO2 as compared to a commercial 1 wt% Pt/Al2O3. The ethanol-prepared catalysts exhibited higher activity than those of the aqua-prepared catalysts. Pre-calcination of the ethanol-prepared catalysts in oxygen at 600 °C resulted in a dramatic decrease in the activity. Temperature programmed oxidation indicated the presence of carbon deposits on the surface of used catalysts. Infrared spectra showed the continuous generation of CO2 when these catalysts were exposed to CO. These indicate the primary role of CO disproportionation in catalytic oxidation of CO on Co3O4 at low temperature and explain the sharp decrease in activity in the initial period. After reduction at 400 °C, the ethanol-prepared catalysts were also found to be more active in catalyzing hydrogenation of CO, and produced less methane and olefin (C2-C4) fraction. Higher turnover frequencies were observed after high temperature reduction (600 °C) as well, at which ethoxyl groups were removed from silica surface. In both reactions, the enhanced activity for the ethanol-prepared catalysts can not be fully accounted for by the increase in the dispersion of Co3O4 or CO metal. This suggests that the surface structures of Co3O4 or CO were further modified by the carbonaceous species derived from ethanol.  相似文献   

11.
CO adsorption and oxidation over supported Pt14 with different CO coverage on TiO2(110) surface were investigated using density functional theory (DFT) calculations and thermodynamic analysis. According to the phase diagram, Pt14/TiO2(110) and 11CO@Pt14/TiO2(110) were chosen to represent the low and high CO coverage of Pt clusters, respectively. Our study shows that the high coverage of CO can induce the structural change of supported Pt clusters and weaken the interaction between Pt clusters and TiO2 support. The CO adsorption and oxidation mechanism depends on the CO coverage, which is determined by the experimental reactant composition, pressure, and temperature. At low CO coverage, the dissociated oxygen is active specie to form CO2 by reacting with CO. At high coverage, the molecular oxygen can directly react with CO via the formation of OOCO intermediate. Our proposed mechanisms provide useful information for understanding the CO oxidation over Pt clusters with different CO coverage. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Supported metallic catalysts were prepared from pyrolysis of the organometallic clusters RuOs3(CO)13(μ-H)2, Os3(CO)10(μ-AuPPh3)2, Os3(CO)12, Ru3(CO)12 and [Ru(CO)4]n, on either silica or titania, and their catalytic performance for CO oxidation has been assessed against a supported catalyst prepared from RuCl3. Ruthenium catalysts prepared from organometallic precursors were found to exhibit better activity, and that supported on TiO2 exhibited activity at the lowest operating temperature.  相似文献   

13.
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char-acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the ex-istence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/SiO2 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SiO2 con-tains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for-mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts,Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demon-strating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silica-supported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.  相似文献   

14.
Oxidation of CO by gas-phase atomic clusters is being actively studied to understand the molecular-level mechanisms of heterogeneous CO oxidation over related catalytic surfaces. However, it is experimentally challenging to study CO oxidation by neutral heteronuclear metal oxide clusters because of the difficulty of cluster ionization and detection without fragmentation. Herein, the neutral AuVO2-4 clusters were experimentally generated and their reactions with CO and O2 were studied. The experimental results showed that CO adsorption is the dominant channel on the interactions of AuVO4 and AuVO3 with CO, and AuVO2 can pick up an O2 molecule to generate AuVO4. Theoretical studies indicated that the oxidation of the trapped CO in AuVO3,4CO into CO2 is exothermic while the reaction barriers have to be overcome at the elevated temperatures. A catalytic cycle for CO oxidation by AuVO2-4 is proposed.  相似文献   

15.
Investigations on the reactivity of atomic clusters have led to the identification of the elementary steps involved in catalytic CO oxidation, a prototypical reaction in heterogeneous catalysis. The atomic oxygen species O.? and O2? bonded to early‐transition‐metal oxide clusters have been shown to oxidize CO. This study reports that when an Au2 dimer is incorporated within the cluster, the molecular oxygen species O22? bonded to vanadium can be activated to oxidize CO under thermal collision conditions. The gold dimer was doped into Au2VO4? cluster ions which then reacted with CO in an ion‐trap reactor to produce Au2VO3? and then Au2VO2?. The dynamic nature of gold in terms of electron storage and release promotes CO oxidation and O? O bond reduction. The oxidation of CO by atomic clusters in this study parallels similar behavior reported for the oxidation of CO by supported gold catalysts.  相似文献   

16.
A series of solvated metal atom dispersion (SMAD) catalysts: Pd/SiO2, Pd/Al2O3, Sn/SiO2, Sn/Al2O3, PdxSny/SiO2 and PdxSny/Al2O3. It was prepared by simultaneous evaporation of Pd and Sn. The metals were co-deposited at 77 K using acetone, 2-propanol and THF to produce colloids “in situ” all the supported catalyst were characterized by chemisorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and TPR. This series of catalyst were tested for crotonaldehyde hydrogenation in gas phase to obtain crotyl alcohol.  相似文献   

17.
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO2(111), TiO2(110) and Al2O3(001) surfaces. The heterogeneous system Ru1/CeO2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO2(110) and Al2O3(001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru1/CeO2 exhibits good catalytic activity for CO oxidation via the Langmuir–Hinshelwood mechanism, thus is a promising single‐atom catalyst.  相似文献   

18.
Supported Pd catalysts are active in catalyzing the highly exothermic methane combustion reaction but tend to be deactivated owing to local hyperthermal environments. Herein we report an effective approach to stabilize Pd/SiO2 catalysts with porous Al2O3 overlayers coated by atomic layer deposition (ALD). 27Al magic angle spinning NMR analysis showed that Al2O3 overlayers on Pd particles coated by the ALD method are rich in pentacoordinated Al3+ sites capable of strongly interacting with adjacent surface PdOx phases on supported Pd particles. Consequently, Al2O3‐decorated Pd/SiO2 catalysts exhibit active and stable PdOx and Pd–PdOx structures to efficiently catalyze methane combustion between 200 and 850 °C. These results reveal the unique structural characteristics of Al2O3 overlayers on metal surfaces coated by the ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.  相似文献   

19.
Pd supported on TiO2-Al2O3 binary oxides prepared by coprecipitation method has been investigated for the total oxidation of methane. All Pd/TiO2-Al2O3 catalysts show higher activity than Pd/Al2O3 and Pd/TiO2. Among them, Pd/2Ti-3Al with a Ti/Al ratio of 2 to 3 has a T90% of 395 ℃ at a gas hourly mass velocity of 33000 mL/(h*g), which is at least 50 ℃ lower than that of Pd supported on single metal oxide Al2O3 or TiO2. The results of TPR and ^180-isotope exchange experiments demonstrated that the excellent activity of Pd/2Ti-3Al was due to its high oxygen mobility and moderate reducibility, which is in accordance with our previous work, XPS results indicated that the dispersion of Pd was not the key factor to influence the catalytic activity.  相似文献   

20.
Water pollution by polychlorinated aromatic hydrocarbons has always been a global issue. In this work, we reported a synthesis of supported palladium catalysts Pd/C, Pd/CeO2, Pd/SBA‐15, Pd/ZrO2,Pd/SiO2, and Pd/Al2O3 as well as their catalytic activities on hydrodechlorination (HDC) of 1,2,4,5‐tetrachlorobenzene (TeCB). These Pd catalysts were characterized by Brunauer‐Emmett‐Teller (BET) specific surface area, Transmission electron microscopy (TEM), X‐ray diffraction (XRD), energy Dispersive X‐ray Fluorescence (EDXRF), CO‐chemisorption, and H2‐temperature programmed reduction (H2‐TPR) analysis. Pd/C, Pd/CeO2 and Pd/SBA‐15 catalysts showed relatively high catalytic activities. The catalytic activities were associated with dispersion of Pd, metal surface area, and reaction temperature, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号