首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
化学   11篇
  2013年   1篇
  2008年   1篇
  2004年   1篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
排序方式: 共有11条查询结果,搜索用时 328 毫秒
1.
A facile and environment friendly approach was developed to graft vinyl acetate (VAc) onto plastic articles in an aqueous solution using tert‐butyl alcohol (TBA) as a compatiblizer and benzoyl peroxide (BPO) as an initiator. In a novel setup, excessive monomer suspended in a water phase, VAc could be conveniently grafted on the model substrate of low‐density polyethylene (LDPE) film and the graft percentage (GP) could be developed up to 7.3%. Reaction temperature could increase GP significantly, while adding monomer over a critical volume did not influence GP. By adding some paradioxybenzene, i.e. 0.06–0.08% in VAc phase, homopolymer PVAc could be avoided practically, while graft polymerization proceeded favorably in aqueous solutions. It was proved by attenuated total reflection‐infrared (ATR‐IR) spectroscopy that grafted VAc was located mainly at the surface of the LDPE film and hydrophilic nature of both grafted and alcoholyzed films were improved via contact angle measurements. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
以褐藻酸钠膜浸渍在15%CuCl2*2H2O水溶液中48 h的方法,于室温制备了疏水性的褐藻酸铜(Ⅱ)配位聚合物膜,并通过ESR、 UV-Vis、 IR、 XPS和电导率等手段,研究此配位催化剂褐藻酸铜(Ⅱ)配位聚合物膜表面的组成、配位结构和性质,得知1个Cu2+ 是以dsp2杂化空轨道与褐藻酸2个链节单元的2个羧羟基氧及其2个脱质子带负电荷氧的孤对电子发生配位作用,形成低自旋构型的褐藻酸铜(Ⅱ)配位聚合物,中心Cu2+ 的配位数为4,这对于低分子配合物而言,其空间构型一般是正方形,但在褐藻酸铜(Ⅱ)配位聚合物中,由于褐藻酸分子链的缠绕和卷曲,使上述的空间构型被扭曲,甚至有些配位体没有到位,导致该配位聚合物的中心Cu2+ 存在一些空位中心而具有配位催化活性,因此,HSO3-能按配位催化机理产生初级自由基氢,使醋酸乙烯酯(VAc)按自由基加聚反应历程进行聚合,这有别于CuCl2-Na2SO3-H2O氧化还原引发聚合体系。测定VAc在本体系和室温、pH=7条件下聚合的诱导期为90 s,反应时间24 h。聚醋酸乙烯酯(PVAc)得率82%, mw=1.02×106, mn=2.27×105, mw/mn=4.49。  相似文献   
3.
The new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETEFU), was synthesized from 5‐fluorouracil (5‐FU) and 3,6‐endo‐methylene‐1,2,3,6‐tetrahydophthalimidoethanoyl chloride (ETEC). Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerization reactions using 2,2‐dimethoxy‐2‐phenylacetophenone (DMP) as the photoinitiator. The synthesized ETEFU and polymers were identified by FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The contents of ETEFU units in poly(ETEFU‐co‐AA) and poly(ETEFU‐coVAc) were 20 and 17 mol%, respectively. The number‐average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were 4,600 to 10,700 g mol−1. In vitro cytotoxicities of samples were evaluated with cancer cell lines [mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937)] and a normal cell line [mouse liver cells (AC2F)]. Cytotoxicities of 5‐FU and synthesized samples against the cancer cell lines were ranked as follows: ETEFU > poly(ETEFU) > 5‐FU > poly(ETEFU‐co‐AA) > poly(ETEFU‐coVAc). The in vivo antitumor activities of poly(ETEFU) and poly(ETEFU‐co‐AA) against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses except for the activity of poly(ETEFU) at 0.8 mg/kg. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1589–1595, 1999  相似文献   
4.
根据IR,ESR,XPS和电导率的测试结果推定,在催化剂聚丙烯酰胺-CuCl~2膜表面上,1个Cu^2^+与聚丙烯酰胺4个链节单元配位,产生σ配位键而交联,形成疏水性的聚丙烯酰胺-Cu(Ⅱ)配位聚合物膜.从该膜的X射线光电子能谱中的Shake-up效应得知,膜表面的Cu^2^+具有高自旋态电子构型,其缺位处与醋酸乙烯酯,Na~2SO~3配位活化,并产生自由基氢,从而在室温Na~2SO~3水溶液体系(pH=7)中能催化引发醋酸乙烯酯按自由基加聚反应历程进行聚合,诱导期3min20s,得率75%。  相似文献   
5.
电化学聚合漆酚钴膜配位结构与催化性能研究   总被引:3,自引:0,他引:3  
电化学方法合成的聚合漆酚 (EPU)通过与氯化钴的异丙醇溶液作用 ,生成聚合漆酚钴配合物膜(EPU Co3+ ) .采用红外光谱、XPS光电子能谱、DTA TG、动态机械热分析 (DMTA)以及原子发射光谱 (AES)等手段进行表征 ,确定其配位结构 ,即每个钴离子与EPU中两个链节单元的羟基发生配位而交联 ,因此玻璃化转变温度和耐热性能均得到提高 .实验表明 ,此配合物膜在室温下的Na2 SO3水体系 (pH =7)中能催化引发VAc的聚合  相似文献   
6.
 To obtain high molecular weight (HMW) poly(vinyl acetate) (PVAc) with high conversion and high linearity for a precursor of HMW poly(vinyl alcohol) (PVA), vinyl acetate (VAc) was suspension-poly-merized using a low-temperature initiator, 2,2′-azobis (2,4-dimethyl-valeronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior and molecular structures of PVAc and PVA prepared by saponifying PVAc were investigated. On the whole, the experimental results well corres-ponded to the theoretically predicted tendencies. Suspension polymerization was slightly inferior to bulk polymerization in increasing molecular weight of PVA. In contrast, the former was absolutely superior to the latter in increasing conversion of the polymer, which indicated that the suspension polymerization rate of VAc was faster than the bulk one. These effects could be explained by a kinetic order of ADMVN concentration calculated by initial-rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 30 °C by adopting ADMVN proved to be successful in obtaining PVA of HMW (number-average degree of polymerization (P n)): (4200–5800) and of high yield (ultimate conversion of VAc into PVAc: 85–95%) with diminishing heat generated during polymerization. In the case of bulk polymerization of VAc at the same conditions, maximum P n and conversion of 5200–6200 and 20–30% was obtained, respectively. The P n, lightness, and syndiotacticity were higher with PVA prepared from PVAc polymerized at lower temperatures. Received: 10 February 1998 Accepted: 15 April 1998  相似文献   
7.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐coVAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐coVAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   
8.
用热重分析技术对微悬浮法氯乙烯-酷酸乙烯酯共聚树脂的热降解反应进行了研究,结果表明氯乙烯-醋酸乙烯共聚树脂在热分解过程中,HCl和HAc同时脱出;在静态空气和静态氮气,升温速率为5、10℃min-1的条件下,共聚树脂的热降解均为二级反应,热降解表观活化能Ea为160.82~183.77KJ·mol-1;ln[A/s]为28.64~34.74.  相似文献   
9.
A random copolymer P(VAc-MMA)was synthesized via seeded emulsion copolymerization with vinyl acetate (VAc)and methyl methacrylate(MMA)as monomers,and the polymer electrolytes comprising blend of corresponding copolymer P(VAc-MMA)as a host polymer and LiClO_4 as a dopant were prepared by solution casting technique. Performances of the synthesized copolymer and prepared polymer membrane and electrolyte were studied by FTIR,XRD, TG,DSC,mechanical testing and AC impedance.According to the study of FTIR and D...  相似文献   
10.
The living free radical polymerizations of vinyl acetate (VAc) were successfully achieved in the presence of a novel organic selenium compound (diselenocarbonates), with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The living characteristics of the VAc polymerization were confirmed by the linear first‐order kinetic plots and linear increase of molecular weights (Mn) of the polymers with monomer conversions, while keeping the relatively low molecular weight distributions. In addition, the end of the polymers contains selenium element which may be useful in biotechnological and biomedical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3159–3165  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号