首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETEFU), was synthesized from 5‐fluorouracil (5‐FU) and 3,6‐endo‐methylene‐1,2,3,6‐tetrahydophthalimidoethanoyl chloride (ETEC). Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerization reactions using 2,2‐dimethoxy‐2‐phenylacetophenone (DMP) as the photoinitiator. The synthesized ETEFU and polymers were identified by FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The contents of ETEFU units in poly(ETEFU‐co‐AA) and poly(ETEFU‐co‐VAc) were 20 and 17 mol%, respectively. The number‐average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were 4,600 to 10,700 g mol−1. In vitro cytotoxicities of samples were evaluated with cancer cell lines [mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937)] and a normal cell line [mouse liver cells (AC2F)]. Cytotoxicities of 5‐FU and synthesized samples against the cancer cell lines were ranked as follows: ETEFU > poly(ETEFU) > 5‐FU > poly(ETEFU‐co‐AA) > poly(ETEFU‐co‐VAc). The in vivo antitumor activities of poly(ETEFU) and poly(ETEFU‐co‐AA) against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses except for the activity of poly(ETEFU) at 0.8 mg/kg. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1589–1595, 1999  相似文献   

2.
A new monomer, maleimidoethanoyl‐5‐fluorouracil (MIEFU), was synthesized by the reaction of maleimidoethanoyl chloride and 5‐fluorouracil (5‐FU). The homopolymer of MIEFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and elemental analysis. The contents of the MIEFU units in poly(MIEFU‐co‐AA) and poly(MIEFU‐co‐VAc) were 18 and 30 mol %, respectively. The number‐average molecular weights of the synthesized polymers, as determined by gel permeation chromatography, ranged from 4900 to 9800. The in vitro cytotoxicities of the samples against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the following order: 5‐FU ≥ MIEFU > poly(MIEFU) > poly(MIEFU‐co‐AA) > poly(MIEFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all the doses tested. The inhibitions of the SV40 DNA replication of the samples were much greater than that of the control. The synthesized monomer and polymers showed more antiangiogenesis activity than the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1247–1256, 2000  相似文献   

3.
The new monomer, α-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (EETFU), was synthesized from 5-fluorouracil (5-FU) and α-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl chloride. Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylaceto-phenone. The synthesized samples were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopes, elemental analysis, and gel permeation chromatography. The EETFU contents in poly(EETFU-co-AA) and poly(EETFU-co-VAc) were 40 and 37 mol %, respectively. The number average molecular weights were in range from 8,400 to 10,300. The in vitro cytotoxicities of synthesized samples were evaluated against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line. The range of IC50 values obtained from the in vitro test for synthesized samples were 0.03–0.16 µg/mL against cancer cell lines. The in vitro cytotoxicities of polymers were beter than 5-FU. The in vivo antitumor activities of synthesized monomer and polymers were also investigated by mice bearing the sarcoma 180 tumor cells. The in vivo antitumor activities of the synthesized monomer and polymers were greater than those of 5-FU at corresponding dosage concentrations. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2619–2627, 1999  相似文献   

4.
The new monomer α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (EMTFU) was synthesized from 5-fluorouracil (5-FU) and α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl chloride (EMTC). Poly(α-ethoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(EMTFU)], poly(α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-acrylic acid) [poly(EMTFU-co-AA)], and poly(α-ethoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(EMTFU-co-VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as the photoinitiator. The synthesized EMTFU and its polymers were identified by Fourier transfer infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of EMTFU in poly(EMTFU-co-AA) and poly(EMTFU-co-VAc) determined by elemental analysis were 46 and 70 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range of 17,200–20,900. The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and AC2F as a normal cell line. The cytotoxicities of 5-FU and synthesized samples against cancer cell lines increased in following orders: 5-FU ≈ EMTFU > poly(EMTFU-co-AA) > poly(EMTFU) > poly(EMTFU-co-VAc). The in vivo antitumor activities of the synthesized samples against mice bearing the sarcoma 180 tumor cell line were evaluated. The in vivo antitumor activities of EMTFU and its polymers were greater than those of 5-FU at a dosage of 80 mg/kg. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2985–2992, 1998  相似文献   

5.
The new monomer, α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (MMTFU), was synthesized from 5-fluorouracil (5-FU) and α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl chloride (MMTC). Poly(α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(MMTFU)], poly(α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-acrylicco-AA), and poly(α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(MMTFU-co-VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as the photoinitiator. The synthesized MMTFU and the polymers were identified by FT-IR, 1H-NMR, and 13C-NMR spectroscopies. The contents of MMTFU in poly(MMTFU-co-AA) and poly(MMTFU-co-VAc) determined by elemental analysis were 63 and 57 mol %, respectively. The number average molecular weights and polydispersity indices of synthesized polymers determined with GPC were in range of 7,700–19,100 and 1.6–2.7. The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line. The cytotoxicities of 5-FU and synthesized samples against cancer cell lines increased in following orders: 5-FU > MMTFU > poly(MMTFU) > poly(MMTFU-co-AA) > poly(MMTFU-co-VAc). The in vivo antitumor activities of the synthesized samples against mice bearing the sarcoma 180 tumor cell line were evaluated. The in vivo antitumor activities of the polymers were greater than that of 5-FU at a dose of 80 mg/kg. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1625–1632, 1998  相似文献   

6.
The new monomer, 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl-5-fluorouracil (ETPFU), was synthesized by the reaction of 5-fluorouracil (5-FU) and 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl chloride (ETPC). The homopolymer of ETPFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerizations. The synthesized ETPFU and polymers were identified by Fourier transfer infrared (FTIR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of ETPFU units in poly(ETPFU-co-AA) and poly(ETPFU-co-VAc) were 26 and 32 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range from 8,800 to 10,700. The in vitro cytotoxicities of the samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as a cancer cell line and mouse liver cells (AC2F) as a normal cell line. The in vivo antitumor activities of polymers against Balb/c mice bearing the sarcoma 180 tumor cells were greater than those of 5-FU at all doses tested. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2113–2120, 1999  相似文献   

7.
The new monomer, α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (METFU), was synthesized by the reaction of 5-fluorouracil (5-FU) and exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (ETA) in order to prepare polymers containing 5-FU moiety. Poly(α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(METFU)], poly(α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouraci-co-acrylic acid) [poly(METFU-co-AA)], and poly(α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(METFU-co- VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as an initiator. The synthesized METFU and the polymers were identified by FTIR and 1H-NMR spectroscopies. The contents of METFU in poly(METFU-co-AA) and poly(METFU-co-VAc) determined by elemental analysis were 52 and 60 mol %, respectively. The average molecular weights and polydispersity indices determined with GPC were as follows: M n = 9,400, M w = 11,400 M w/M n = 1.21 for poly(METFU), M n = 14,400, M w = 26,800, M w/M n = 1.86 for poly(METFU-co-AA), and M n = 23,100, M w = 33,000, M w/M n = 1.43 for poly(METFU-co-VAc). The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines, and mouse liver cells (AC2F) as a normal cell line. The in vivo antitumor activities of synthesized polymers against mice bearing the sarcoma 180 tumor cell line were greater than those of 5-FU at concentrations of 0.8 and 80 mg/kg. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2177–2184, 1998  相似文献   

8.
The competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solutions by the copolymer of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and itaconic acid (IA), P(AMPS‐co‐IA), was investigated. Homopolymer of AMPS (PAMPS) was also used to remove these ions from their aqueous solution. In the preparation of AMPS–IA copolymer, the molar percentages of AMPS and IA were 80 and 20, respectively. In order to observe the changes in the structures of polymers due to metal adsorption, FTIR spectra by attenuated total reflectancetechnique and scanning electron microscopy (SEM) pictures of the polymers were taken both before and after adsorption experiments. Total metal ion removal capacities of PAMPS and P(AMPS‐co‐IA) were 1.685 and 1.722 mmol Me2+/gpolymer, respectively. Experimental data were evaluated to determine the kinetic characteristics of the adsorption process. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions onto both PAMPS and P(AMPS‐co‐IA) was found to fit pseudo‐second‐order type kinetics. In addition, the removal orders in the competitive adsorption of these metal ions onto PAMPS and P(AMPS‐co‐IA) were found to be Cd2+ > Pb2+ > Cu2+ and Pb2+ > Cd2+ > Cu2+, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The major objective of this research was to modify the surface characteristics of poly(L ‐lactide) (PLA) by grafting a combination of hydrophilic polymers to produce a continuum of hydrophilicity. The PLA film was solvent cast, and the film surfaces were activated by ultra violet (UV) irradiation. A single monomer or combination of two monomers, selected from vinyl acetate (VAc), acrylic acid (AA), and acrylamide (AAm), were then grafted to the PLA film surface using a UV induced photopolymerization process. The film surfaces resulting from each reaction step were analyzed using ATR‐FTIR spectroscopy and contact angle goniometry. Results showed that AAm dominated the hydrophilicity of the film surface when copolymerized with VAc or AA, while the water contact angles for PLA films grafted with poly(vinyl acetate‐co‐acrylic acid) varied more gradually with feed composition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6534‐6543, 2006  相似文献   

10.
A series of copolylactones was synthesized by ring‐opening copolymerization of glycolide, L ‐lactide and ?‐caprolactone, using stannous octoate as catalyst. The in vitro degradation behaviors of them were studied and data demonstrated different degradation rates which mainly depended on the compositions. Investigation of the 5‐fluorouracil (5‐Fu) release from these copolylactones revealed that the composition, degradation rate and the morphology of the polymeric matrix played an important role on the drug release kinetics. A sustained 5‐Fu release without initial time lag was obtained from random poly(lactide‐co‐glycolide‐co‐caprolactone) (r‐PGLC) drug carrier, and it differed from the cases of polylactide (PLA) or random poly(lactide‐co‐glycolide) (PLGA), which usually showed an initial time lag or biphasic drug release behavior. It was due to the low glass transition temperature (T g) of the r‐PGLC and the drug would diffuse faster in rubbery state under the experimental temperature. Furthermore, a significant change in the drug release behavior of r‐PGLC was observed when the temperatures were changed around the T g of the drug carrier, which implied that the drug release behavior could be regulated by adjusting the morphology of the drug carrier. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A novel method is proposed to access to new poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) using poly(α‐iodo‐ε‐caprolactone‐co‐ε‐caprolactone) as polymeric substrate. First, ring‐opening (co)polymerizations of α‐iodo‐ε‐caprolactone (αIεCL) with ε‐caprolactone (εCL) are performed using tin 2‐ethylhexanoate (Sn(Oct)2) as catalyst. (Co)polymers are fully characterized by 1H NMR, 13C NMR, FTIR, SEC, DSC, and TGA. Then, these iodinated polyesters are used as polymeric substrates to access to poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) by two different strategies. The first one is the reaction of poly(αIεCL‐co‐εCL) with ammonia, the second one is the reduction of poly(αN3εCL‐co‐εCL) by hydrogenolysis. This poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) (FαNH2εCL < 0.1) opens the way to new cationic and water‐soluble PCL‐based degradable polyesters. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6104–6115, 2009  相似文献   

12.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

13.
Generalized two‐dimensional (2D) Fourier transform infrared correlation spectroscopy was used to investigate the effect of the comonomer compositions on the crystallization behavior of two types of biosynthesized random copolymers, poly(hydroxybutyrate‐co‐hydroxyhexanoate) and poly(hydroxybutyrate‐co‐hydroxyvalerate). The carbonyl absorption band around 1730 cm?1 was sensitive to the degree of crystallinity. 2D correlation analysis demonstrated that the 3‐hydroxyhexanoate units preferred to remain in the amorphous phase of the semicrystalline poly(hydroxybutyrate‐co‐hydroxyhexanoate) copolymer, resulting in decreases in the degree of crystallinity and the rate of the crystallization process. The poly(hydroxybutyrate‐co‐hydroxyvalerate) copolymer maintained a high degree of crystallinity when the 3‐hydroxyvalerate fraction was increased from 0 to 25 mol % because of isodimorphism. The crystalline and amorphous absorption bands for the carbonyl bond for this copolymer, therefore, changed simultaneously. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 649–656, 2002; DOI 10.1002/polb.10126  相似文献   

14.
Syntheses of copolymers composed of optically active depsipeptides (3,6‐dimethyl‐2,5‐morphorinedione) and L ‐lactide—poly(L ‐3,L ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide), poly(L ‐3,DL ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide), and poly(L ‐3,D ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide)—were examined in an effort to improve the biodegradability and physical properties of homopoly(L ‐lactide). In degradation tests, the copolymers composed of 3,6‐dimethyl‐2,5‐morphorinedione and lactide in the ratios 10/90 to 13/87 exhibited high biodegradability toward proteinase K, whereas a homopolymer, poly(L ‐lactide), exhibited very poor biodegradability (only 50% after 200 h). These polymers composed of 3,6‐dimethyl‐2,5‐morphorinedione/L ‐lactide in 11/89 to 13/87 ratios also degrades rapidly after being in compost for 30 days. The resulting copolymers, however, showed relatively low elongation properties. Therefore, ternary copolymerizations of L ‐3,DL ‐6‐dimethyl‐2,5‐morphorinedione, ?‐caprolactone, and L ‐lactide were explored in an effort to improve their mechanical properties, especially the elongation, and sufficient results were obtained with an approximate ratio of 3/11/86. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 302–316, 2002  相似文献   

15.
The synthesis of 2‐ethynyl‐9‐substituted carbazole and 3‐ethynyl‐9‐substituted carbazole monomers containing first‐generation chiral and achiral dendritic (i.e., minidendritic) substituents, 2‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (2ECz), 3‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (3ECz), 2‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (2ECz*), and 3‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (3ECz*), is presented. All monomers were polymerized and copolymerized by stereospecific polymerization to produce cis‐transoidal soluble stereoisomers. A structural analysis of poly(2ECz), poly(2ECz*), poly(3ECz), poly(3ECz*), poly(2ECz*‐co‐2ECz), and poly(3ECz*‐co‐3ECz) by a combination of techniques, including 1H NMR, ultraviolet–visible, and circular dichroism spectroscopy, thermal optical polarized microscopy, and X‐ray diffraction experiments, demonstrated that these polymers had a helical conformation that produced cylindrical macromolecules exhibiting chiral and achiral nematic phases. Individual chains of these cylindrical macromolecules were visualized by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3509–3533, 2002  相似文献   

16.
Segmented copolyesters, namely, poly(butylene terephthalate)–poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PBT‐PETIS), were synthesized with the melting transesterification processing in vacuo condition involving bulk polyester produced on a large scale (PBT) and ternary amorphous random copolyester (PETIS). Investigations on the morphology of segmented copolyesters were undertaken. The two‐phase morphology model was confirmed by transmission electron microscopy and dynamic mechanical thermal analysis. One of the phases was composed of crystallizable PBT, and the other was a homogeneous mixture of PETIS and noncrystallizable PBT. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2257–2263, 2003  相似文献   

17.
Novel biodegradable copolymers, poly(1,4‐dioxan‐2‐one‐co‐glycolide) [P(DON‐co‐GA)] containing a high proportion of 1,4‐dioxan‐2‐one (DON), were synthesized by copolymerizations of DON and glycolide (GA) at 120 °C for 16 h using stannous octoate as catalyst. Chemical composition and microstructural variation of the resulting copolymer were investigated by 1H‐ and 13C NMR and thermal properties by differential scanning calorimetry (DSC). From the 13C NMR spectra, it was observed that, apart from the expected preponderance of DON sequences, the minor component, GA, was indeed distributed at various points along the copolymer chain rather than incorporated as distinct blocks, which is consistent with a random sequence distribution. This view also was supported by the DSC results, which showed that most copolymers were amorphous except for one with a relatively high fraction of DON. The conclusion that it was a random structure rather than a statistical copolymer is discussed, using the theories about the mechanism of this type of polymerization in current as a reference. P(DON‐co‐GA) films were prepared by casting the copolymer solution in hexafluoroisopropanol (HFIP) with two concentrations of the polymeric solution (10 and 25 wt %). The in vitro hydrolytic degradation behaviors of these films were studied in phosphate buffer solution (pH = 7.4) at 37 °C and characterized by DSC, scanning electron microscopy, weight loss, and change in inherent viscosity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2558–2566, 2004  相似文献   

18.
Poly(ethylene terephthalate)‐co‐poly(propylene glycol) (PET‐co‐PPG) copolymers with PPG ratio ranging from 0 to 0.90 mol% were synthesized by the melt copolycondensation. The intrinsic viscosity, structure, non‐isothermal crystallization behavior, nucleation and spherulitic growth of the copolymers were investigated by Ubbelohde viscometer, Proton Nuclear Magnetic Resonance (1H‐NMR), differential scanning calorimetry, and polarized optical microscopy, respectively. The non‐isothermal crystallization process of the copolymers was analyzed by Avrami, Ozawa, Mo's, Kissinger, and Dobreva methods, respectively. The results showed that the crystallizability of PET was apparently enhanced with incorporating a small amount of PPG, which first rose and then reduced with increasing amount of PPG in the copolymers at a given cooling rate. The crystallization mechanism was a three‐dimensional growth with both instantaneous and sporadic nucleation. Particularly, PET‐co‐PPG containing 0.60 mol% PPG exhibited the highest crystallizability among all the copolymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

20.
A series of gradient and block copolymers, based on 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and tert‐butyl acrylate (tBA), were synthesized by atom transfer radical polymerization (ATRP) in a first step. The MEO2MA monomer leads to the production of thermosensitive polymers, exhibiting lower critical solution temperature (LCST) at around room temperature, which could be adjusted by changing the proportion of tBA in the copolymer. In a second step, the tert‐butyl groups of tBA were hydrolyzed with trifluoroacetic acid to form the corresponding block and gradient copolymers of MEO2MA and acrylic acid (AA), which exhibited both temperature and pH‐responsive behavior. These copolymers showed LCST values strongly dependent on the pH. At acid pH, a slightly decrease of LCST with an increase of AA in the copolymer was observed. However, at neutral or basic conditions, ionization of acid groups increases the hydrophilic balance considerably raising the LCST values, which even become not observable over the temperature range under study. In the last step, these carboxylic functionalized copolymers were covalently bound to biocompatible and biodegradable films of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(HB‐co‐HHx)] obtained by casting and, previously treated with ethylenediamine (ED) to render their surfaces with amino groups. Thereby, thermosensitive surfaces of modified P(HB‐co‐HHx) could be obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号