首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184篇
  免费   159篇
  国内免费   331篇
化学   1240篇
晶体学   41篇
力学   5篇
综合类   9篇
数学   27篇
物理学   352篇
  2023年   21篇
  2022年   30篇
  2021年   48篇
  2020年   59篇
  2019年   45篇
  2018年   48篇
  2017年   39篇
  2016年   42篇
  2015年   37篇
  2014年   53篇
  2013年   99篇
  2012年   134篇
  2011年   71篇
  2010年   65篇
  2009年   84篇
  2008年   81篇
  2007年   77篇
  2006年   77篇
  2005年   66篇
  2004年   60篇
  2003年   61篇
  2002年   50篇
  2001年   39篇
  2000年   32篇
  1999年   40篇
  1998年   17篇
  1997年   22篇
  1996年   23篇
  1995年   22篇
  1994年   17篇
  1993年   18篇
  1992年   15篇
  1991年   13篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   12篇
  1984年   2篇
  1982年   4篇
  1981年   11篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有1674条查询结果,搜索用时 15 毫秒
1.
氢能的引入能有效提升配电网的供电可靠性,而电解水制氢是实现低碳转型的关键技术,开发高效的电解水催化剂势在必行。过渡金属氧化物储量大、催化活性高,是具有广阔应用前景的析氧反应催化剂。本文通过射频等离子体处理制备石墨烯上负载Co3O4析氧催化剂,XRD、Raman和XPS测试结果显示,二维结构石墨烯的引入加速表面电子迁移,增大了反应面积。等离子体处理促进了纳米粒子在石墨烯上的负载,利用等离子体刻蚀作用在催化剂表面制造出大量碳结构缺陷和氧空位结构,改善了活性位点分布,有效调控Co3O4电子结构,提高析氧催化活性。电化学测试表明,本文中合成的Co3O4@rGO在电流密度为50 mA·cm-2时的过电位为410 mV,动力学反应速率较快,表现出优于商业IrO2的析氧催化活性。  相似文献   
2.
本文以咪唑衍生物为配体,通过水热合成法与钴离子制备出两个配位聚合物:{[Co(DTA)(1,4-DIB)(H2O)]·H2O}n(1)和[Co(DTA)(1,3-BMIB)]n(2)(1,4-DIB=1,4-二(1H-咪唑-1-基)苯; 1,3-BMIB=1,3-二(4-甲基-1H-咪唑-1-基)苯;H2DTA=2,5-二甲氧基对苯二甲酸)。利用X射线单晶衍射、粉末衍射、热失重、元素分析、红外光谱以及固体紫外-可见光谱等对两个配合物进行了表征。结构分析证实配合物1和2是通过二维结构堆积成的三维超分子化合物。粉末衍射测试则显示两个配合物在水中有很好的稳定性。固体紫外-可见光谱显示两个配合物属半导体材料,对紫外-可见光有很强的吸收作用。在光催化实验中,配合物1和2可加快亚甲基蓝的降解速度。  相似文献   
3.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
4.
Herein, we report the synthesis of specific silica-supported Co/Co3O4 core–shell based nanoparticles prepared by template synthesis of cobalt-pyromellitic acid on silica and subsequent pyrolysis. The optimal catalyst material allows for general and selective hydrogenation of pyridines, quinolines, and other heteroarenes including acridine, phenanthroline, naphthyridine, quinoxaline, imidazo[1,2-a]pyridine, and indole under comparably mild reaction conditions. In addition, recycling of these Co nanoparticles and their ability for dehydrogenation catalysis are showcased.  相似文献   
5.
The study is focused on the synthesis of a new Co(II) and Ni(II) metal complexes, which is synthesized by the reaction of the isatin 4‐aminoantipyrine Schiff base ligand with selected divalent Co(II) and Ni(II) ions and their possible applications as flame retardant additives in paint formulations for surface coating application. The prepared metal complexes were characterized using a combination of Fourier transform infrared, elemental analysis, proton nuclear magnetic resonance, 13C‐NMR spectra, and mass spectroscopy. The prepared Schiff base ligand metal complexes were physically added to alkyd paint formulation to give coating formulations at a laboratory scale and then applied onto plywood and steel panels using a brush. The ignitability and oxygen index values obtained indicated that the paint which contained the prepared Co(II) and Ni(II) metal complexes as additives exhibited very good flame retardant. The physical and mechanical characteristics of the coatings were studied in order to estimate any disadvantages due to the incorporation of the additives. It was discovered that the added substances did not impact the hardness, flexibility, and adhesion of the prepared coating films. The gloss of the paint formulation film was improved due to the incorporation of the aromatic ring into the formulation and the level of the oil percent.  相似文献   
6.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
7.
The new Co(II) - carboxamide complex ( 1 ) and Co3O4 nanoparticles ( 2 ), by way of thermal decomposition of ( 1 ) have been efficiently synthesised in the environment-friendly. X-ray diffraction reveals a slightly distorted octahedral coordination of cobalt (four nitrogens and two oxygens) in ( 1 ) and regular octahedral or tetrahedral ones (oxygens only) in ( 2 ). The investigation of ( 1 ) and ( 2 ) in the Mizoroki-Heck and epoxidation of alkens reactions showed them both to be powerful, green and inexpensive catalysts.  相似文献   
8.
The preparation, characterization and catalytic application of Co (III) salen complex loaded on cobalt ferrite‐silica nanoparticle [CoFe2O4@SiO2@ Co (III) salen complex] are described. Co (III) salen complex loaded on ferrite cobalt‐silica nanoparticles is characterized by transmission electron microscopy, scanning electron microscopy coupled with energy‐dispersive X‐ray, vibrating‐sample magnetometer and Fourier transform‐infrared analyses. The thermal stability of the material is also determined by thermal gravimetric analysis. An average crystallite size is determined from the full‐width at half‐maximum of the strongest reflection by using Scherrer's approximation by powder X‐ray diffractometry. The efficiency of CoFe2O4@SiO2@Co (III) salen complex is investigated in the synthesis of spirooxindoles of malononitrile, various isatins with 1,3‐dicarbonyles. The nanocatalyst demonstrated excellent catalytic activity that gave the corresponding coupling products in good to excellent yields. Moreover, the recoverability and reusability of CoFe2O4@SiO2@Co (III) salen complex is investigated where nanocatalyst could be recovered and reused at least five times without any appreciable decrease in activity and selectivity, which confirmed its high efficiency and high stability under the reaction conditions and during recycling stages.  相似文献   
9.
In this study, Co3O4 nanocatalysts were constructed in environmentally appropriate conditions using controlled, effective, and facile microwave method. The final nanostructures were characterized by SEM, XRD, and TEM analyses. The products had a small size distribution, homogeneous morphology, and crystallographic structures associated with the formation of Co3O4 nanostructures. Moreover, EDS mapping analysis confirmed the existence of Co and O elements in the final structure, and the magnetic properties of the samples were investigated by VSM. The application of this nanostructure in a catalytic process was further examined, and the results suggested that it could be used as a novel candidate for the synthesis of arylidene barbituric and Meldrum,s acid through Knoevenagel condensation of aldehydes by barbituric and Meldrum,s acid in aqueous media. The high yield of these nanocatalysts would be justified by the nature of the nanostructure as well as the experimental procedure developed in this study, which affected the physicochemical features of the products.  相似文献   
10.
In this work, trisaminomethane–cobalt complex immobilized onto the surface of Fe3O4 magnetic nanoparticles was successfully prepared via a simple and inexpensive procedure. The prepared nanocatalyst was considered a robust and clean nanoreactor catalyst for the oxidation and synthesis of sulfides under green conditions. This ecofriendly heterogeneous catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, inductively coupled plasma-atomic emission spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, X-ray mapping, scanning electron microscopy, and transmission electron microscopy techniques. Use of green medium, easy separation and workup, excellent reusability of the nanocatalyst, and short reaction time are some outstanding advantages of this method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号