首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   14篇
化学   1篇
晶体学   2篇
物理学   64篇
  2014年   1篇
  2011年   2篇
  2010年   6篇
  2009年   13篇
  2008年   13篇
  2007年   10篇
  2006年   11篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
排序方式: 共有67条查询结果,搜索用时 890 毫秒
1.
Composite optical thin-film materials have received a significant amount of interest in order to relieve the material constraints on refractive indices as well as reducing the number of layers required in optical coating design. Amongst others binary zirconia-silica composite thin films have attracted considerable attentions due to their several favorable opto-mechanical properties. In the present studies such a composite system under certain compositional mixings displayed both refractive index and band gap supremacy over pure zirconia films violating the most popular Moss rule. This unexpected evolution has several practical applications one of which can be directly employed in extending the range of tunability of the refractive index. Besides, the probing of such a novel evolution through the analysis of ellipsometric refractive index modeling and morphological correlation functions has revealed several novel as well as superior microstructural properties in the composite thin film systems. All these characterization and analysis techniques distinctly indicate a strong interrelation between the microstructural ordering and superior optical properties of the present zirconia-silica codeposited composites.  相似文献   
2.
Ta2O5/SiO2 and ZrO2/SiO2 high reflecting (HR) coatings are prepared by ion beam sputtering and electron beam evaporation, respectively. The laser-induced damage thresholds (LIDTs) of these samples are investigated with 2 μm femtosecond pulse lasers (80 fs, 1 kHz). It is found that the Ta2O5/SiO2 HR coating has a higher capability of laser damage resistance than the ZrO2/SiO2 HR coating in the 2 μm femtosecond regime. The scanning electron microscope results show that the damage sites of the ZrO2/SiO2 HR coating have a relatively porous structure, the loose structure of coatings will provide more sites for water molecules, and the LIDTs of HR coatings will be reduced as a result of the strong water absorption at the wavelength of 2 μm.  相似文献   
3.
Resonant amplification and enhancement of evanescent wave’s frustration across an optical barrier by using single dielectric coating is numerically demonstrated in this article. With further tuning of the thickness values of the second and the third medium (optical barrier) of the proposed stratified four-media configuration, it is shown that it may be possible to achieve unity transmittance at discrete, but closely spaced incident angles within the full range defined by the theoretical cut-off limit. The designed configuration may have other potential applications than lithography and waveguide design is one such example.  相似文献   
4.
The surface characteristics of titanium oxide films evaluated by gray level co-occurrence matrices (GLCMs) and entropy are demonstrated experimentally. A PC-based measurement system was set up to detect the interference fringe of optical coating surface as captured by a Fizeau interferometer. Titanium oxide films were prepared by an electron-beam gun evaporation method. The proposed measuring system was used to evaluate the surface flatness of titanium oxide films coated on glass substrates. The variation of entropy in titanium oxide films before and after film deposition was found to be related to the root-mean-square (rms) surface roughness. Surface characteristics of thin films were fast measured by our proposed method and the test results were verified by atomic force microscopy (AFM) and scanning electrical microscopy (SEM).  相似文献   
5.
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same.  相似文献   
6.
We explore the pattern of frequency-dependent linear and non-linear optical (NLO) response of one electron quantum dots harmonically confined in two dimensions. For some fixed values of transverse magnetic field strength (ωc), and harmonic confinement potential (ω0), the influence of effective mass (m*) of the system and the symmetry breaking anharmonic interaction on the frequency-dependent linear (α), and the first (β), and second (γ) NLO responses of the dot is computed through linear variational route. The investigation reveals interesting roles played by the anharmonic interaction and effective mass in modulating the response properties.  相似文献   
7.
The optical bus architecture for on-board applications requires a number of optical splitters with precise split ratios to route part of the input signal. Since hollow metal waveguide provides well collimated beams with very small gap loss, it opens the possibility of inserting discrete optical beam splitters (taps). The optical tap requires low excess loss, polarization insensitivity, temperature stability, minimized walk-off of the propagating beam, and cost effective manufacturing. By benefiting from the mature interference coating technology for polarization insensitivity and temperature stability, we design a pellicle beam splitter based on a static microelec tro-mechanical system (MEMS) and develop processes to fabricate pellicle splitters using wafer level bonding of silicon and glass substrates, with subsequent thinning to 20 μm. With the approaches described in this paper, we have demonstrated optical beam splitters with excess loss of less than 0.17 dB that operate at a data rate of 10 Gb/s showing a clean eye diagram while providing controlled split ratio and polarization insensitivity. We have demonstrated a high yielding MEMS based silicon processing platform which has the potential to provide a cost effective manufacturing solution for optical beam splitters.  相似文献   
8.
In the comparison of damage modifications, absorption measurement and energy dispersive x-ray analysis, the effect of vacuum on the laser-induced damage of anti-reflection coatings is analyzed. It is found that vacuum decreases the laser-induced damage threshold of the films. The low laser-induced damage threshold in vacuum environments as opposed to air environments is attributed to water absorption and the formation of the O/Si, O/Zr sub-stoichiometry in the course of laser irradiation.  相似文献   
9.
The laser-induced damage characteristics and adsorption effects of organic contamination molecules of two high reflectors (HR) prepared by electron beam evaporation (EB) and ion beam sputtering (IBS) method at 1064 nm is investigated in vacuum. It is found that EB films show the performance degradation of laser induced damages in vacuum while for IBS film, seems to have no this effect, in comparison with air environment. In addition, EB coatings also have the strong affinity with organic contamination molecules, in contrast of IBS films. The results reveal that ion beam sputtering (IBS) method seem to be one of the favorite film deposition techniques of the optical films used in vacuum and space environments.  相似文献   
10.
In order to prepare fluorescent material for UV-LED used as illumination light source, two series of Eu2+ doped (1 mol%) alkaline earth aluminate phosphors CaxSr1−xAl2O4 and BaxSr1−xAl2O4 were prepared. The crystal structure, relative quantum efficiency(Qr), peak wavelength(λp), color tuning and chromaticity were investigated by XRD patterns and photoluminescence (PL) on samples prepared by solid solution system (s series) and powder mixing system (m series) respectively. For the s series, the synthesized CaxSr1−xAl2O4:Eu2+ powders show that the structure transforms from monoclinic to hexagonal at x?0.5, and λp increases from 442.3 to 529.7 nm with decreasing x. For the BaxSr1−xAl2O4:Eu2+ system, the structure transforms from monoclinic to hexagonal at x?0.3, and λp decreases from 520.5 to 502.2 nm continuously from x=0 to 1. The shift in λp could be explained by the crystal field effect, which is affected by different coulomb attractive forces due to the various fraction of alkaline earth cation in the host lattice. Different phosphor properties prepared by either solid solution or powder mixing methods were characterized by chromaticity measurements for both reflective and transmissive modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号