首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   330篇
  国内免费   531篇
化学   2204篇
晶体学   14篇
力学   5篇
综合类   7篇
物理学   94篇
  2024年   4篇
  2023年   11篇
  2022年   28篇
  2021年   72篇
  2020年   111篇
  2019年   87篇
  2018年   73篇
  2017年   76篇
  2016年   88篇
  2015年   159篇
  2014年   131篇
  2013年   190篇
  2012年   176篇
  2011年   138篇
  2010年   140篇
  2009年   136篇
  2008年   124篇
  2007年   109篇
  2006年   104篇
  2005年   103篇
  2004年   72篇
  2003年   65篇
  2002年   32篇
  2001年   27篇
  2000年   27篇
  1999年   20篇
  1998年   12篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
排序方式: 共有2324条查询结果,搜索用时 31 毫秒
1.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
2.
Following a thermal reduction method, platinum nanoparticles were synthesized and stabilized by polyvinylpyrrolidone. The colloidal platinum nanoparticles were stable for more than 3 months. The micrograph analysis unveiled that the colloidal platinum nanoparticles were well dispersed with an average size of 2.53 nm. The sol–gel‐based inverse micelle strategy was applied to synthesize mesoporous iron oxide material. The colloidal platinum nanoparticles were deposited on mesoporous iron oxide through the capillary inclusion method. The small‐angle X‐ray scattering analysis indicated that the dimension of platinum nanoparticles deposited on mesoporous iron oxide (Pt‐Fe2O3) was 2.64 nm. X‐ray photoelectron spectroscopy (XPS) data showed that the binding energy on Pt‐Fe2O3 surface decreased owing to mesoporous support–nanoparticle interaction. Both colloidal and deposited platinum nanocatalysts improved the degradation of methyl orange under reduction conditions. The activation energy on the deposited platinum nanocatalyst interface (2.66 kJ mol?1) was significantly lowered compared with the one on the colloidal platinum nanocatalyst interface (40.63 ± 0.53 kJ mol?1).  相似文献   
3.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
4.
Cobalt-doped mesoporous titania with a crystalline framework synthesized by surfactant templating method presented highly selective (99%) and reasonable conversion rate (49%) of catalytic oxidation of para-chlorotoluene to para-chlorobenzaldehyde in acetic acid using aqueous hydrogen peroxide as oxidant for the first time. Recycling of the catalyst indicates that the catalyst can be used a number of times without losing its activity to a greater extent. By contrast, cobalt-doped mesoporous titania without a crystalline structure and cobalt doped the commercial titania, Degussa P25 prepared by impregnation method with the similar concentration of cobalt were found inactive. The effects of catalyst concentration, reaction time, reaction temperature, and solvents on the performance of the catalyst were also investigated.  相似文献   
5.
Mesoporous polymer microspheres with gold (Au) nanoparticles inside their pores were prepared considering their surface functionality and porosity. The Au/polymer composite microspheres prepared were characterized by transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) techniques. The results showed that the adsorption of Au nanoparticles could be increased by imparting the pore structure and surface‐functional groups into the supporting polymer microspheres (in this study, poly (ethylene glycol dimethacrylate‐co‐acrylonitrile) and poly (EGDMA‐co‐AN) system). Above all, from this study, it was established that the porosity of the polymer microspheres is the most important factor that determines the distribution and adsorption amount of face‐centered cubic (fcc) Au nanoparticles in the final products. Our study showed that the continuous adsorption of Au nanoparticles with the aid of the large surface area and surface interaction sites formed more favorably the Au/polymer composite microspheres. The BET measurements of Au/poly(EGDMA‐co‐AN) composite microspheres reveals that the adsorption of Au nanoparticles into the pores kept the pore structure intact and made it more porous. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5627–5635, 2004  相似文献   
6.
7.
8.
The photopolymerization of bicontinuous microemulsions was simultaneously monitored with differential scanning calorimetry and fluorescence. The kinetics and mechanism of the reaction were studied throughout the entire photopolymerization reaction. The role played by the surfactant in the kinetics and morphology was studied. The nature of the surfactant changed the autoacceleration process and final conversion. The behavior was explained as a result of the differences in the interfacial properties. Anionic cetyltrimethylammonium bromide (CTAB) gave rise to a more flexible interfacial film than anionic sodium dodecyl sulfate (SDS), resulting in competition between the intramolecular and intermolecular reactions in the former systems. As cyclization did not contribute to the increase in the degree of crosslinking, SDS photopolymerization gave solids with a more rigid microstructure. Fluorescence methodology was applied to monitor bicontinuous microemulsion polymerization and to reveal the microstructure and morphology development during photopolymerization. The microemulsion composition was designed to prepare nanoporous, crosslinked materials. Even though the nanostructure of the precursor microemulsions was not retained because of phase separation during polymerization, mesoporous solids were obtained. Their morphologies depended on the nature of the surfactant, and membranes with open cells were successfully prepared with CTAB, whereas more complex morphologies resulted with SDS. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5291–5303, 2006  相似文献   
9.
本文综述了介孔材料在烯烃环氧化反应中的应用,包括材料的制备方法、催化性能以及活性中心的表征。通过硅钛原子的合理匹配可以达到四配位钛的高度分散,从而提高催化活性。硅烷化处理增加材料表面的疏水性,能够大幅度提高活性和选择性。通过多种谱学和分子模拟等手段可表征骨架钛及其配位情况。  相似文献   
10.
甲酰胺对有序介孔二氧化硅形貌的影响   总被引:2,自引:0,他引:2  
At room temperature and in acidic solution, ordered mesoporous silicas with particular morphology were synthesized using cetylpyridinium chloride as the template and formamide as the cosolvent. Scanning electron microscope (SEM), small angle X-ray diffraction (SXRD), and nitrogen adsorption techniques were used to characterize the as-synthesized and calcined samples. Results showed that the samples had hexagonal mesostructure analogous to MCM-41 and relatively narrow pore-size distributions (BJH). Besides, BET surface areas of the samples were in the range of 1 000~1 250 m2·g-1 and high total pore volumes were up to 1.367 cm3·g-1. Addition of formamide affected obviously mesostructures and the morphology of the mesoporous silica. Furthermore, with the increase of the concentration of formamide, the unit-cell constant decreased and particle shape changed from gyroids to fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号