首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5806篇
  免费   1532篇
  国内免费   952篇
化学   5159篇
晶体学   193篇
力学   152篇
综合类   61篇
数学   150篇
物理学   2575篇
  2024年   26篇
  2023年   123篇
  2022年   283篇
  2021年   425篇
  2020年   443篇
  2019年   324篇
  2018年   297篇
  2017年   401篇
  2016年   478篇
  2015年   442篇
  2014年   549篇
  2013年   669篇
  2012年   561篇
  2011年   535篇
  2010年   348篇
  2009年   377篇
  2008年   294篇
  2007年   283篇
  2006年   214篇
  2005年   193篇
  2004年   168篇
  2003年   122篇
  2002年   117篇
  2001年   72篇
  2000年   73篇
  1999年   50篇
  1998年   51篇
  1997年   49篇
  1996年   31篇
  1995年   32篇
  1994年   22篇
  1993年   34篇
  1992年   30篇
  1991年   26篇
  1990年   15篇
  1989年   13篇
  1988年   10篇
  1987年   17篇
  1986年   12篇
  1985年   17篇
  1984年   18篇
  1983年   4篇
  1982年   23篇
  1981年   2篇
  1979年   5篇
  1978年   3篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
排序方式: 共有8290条查询结果,搜索用时 15 毫秒
1.
以氧化石墨烯(GO)为原料, 利用温和方法制备了3种不同还原程度的部分还原氧化石墨烯pRGO1, pRGO2和pRGO3(pRGO1—3); 利用傅里叶变换红外光谱(FTIR)、 拉曼光谱(Raman)、 X 射线光电子能谱(XPS)、 紫外-可见光谱(UV-Vis)、 透射电子显微镜(TEM)和 EDS能谱对其结构和形貌进行了表征. 细胞实验结果表明, 无激光照射下pRGO1—3本身的细胞毒性较低; 近红外(NIR)激光照射下pRGO1—3通过光热和光毒性双重作用杀伤肿瘤细胞. 实验结果显示了pRGO 在肿瘤光热疗法和光动力疗法领域的应用潜力.  相似文献   
2.
There would be a major effect on the cartilage regeneration characteristics of ceramic material in a substrate implant requiring biologically active biomaterials and the reinforcement phase. At this moment, we produced collagen-hyaluronic acid @ hydroxyapatite-halloysite nanotube-single walled carbon nanotube composites, which is a successful technique for making a scaffold with a superior counter for cartilage property. FTIR, XRD, and SEM-EDAX were used to perform morphological and structural studies. The prepared composite's surface feature was investigated and discovered by HRTEM-SAED analysis, and it observed porous nature. The simulated body fluids (SBF) assessment of the materials was noticed their bioactivity and chondrocytes to determine their biocompatibility. Hybrid composite displayed promise for cartilage tissue engineering despite mesenchymal stem cells compatibility effect and magnificently demonstrated an antibacterial effect without antibiotics. The live/dead cells analysis shows that the composite can significantly improve mesenchymal stem cells, and the composite has the potential ability for cartilage regeneration. The above characteristics make the material quite interesting and important in the area for regenerative medicinal uses.  相似文献   
3.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
4.
In this study, the functional interaction of HPLW peptide with VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) was determined by using fast 15N‐edited NMR spectroscopic experiments. To this aim, 15N uniformly labelled HPLW has been added to Porcine Aortic Endothelial Cells. The acquisition of isotope‐edited NMR spectroscopic experiments, including 15N relaxation measurements, allowed a precise characterization of the in‐cell HPLW epitope recognized by VEGFR2.  相似文献   
5.
Shan Qiu 《中国物理 B》2022,31(11):117701-117701
The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation. Through combining the skyrmion with multiferroic heterojunction, a voltage-induced uniaxial strain gradient is adjusted to move skyrmions. In the system, a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain. Due to the symmetry of strain, the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation. We calculate the strain distribution generated by the trapezoidal top electrodes pair, and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity. Our findings provide a stable and low-energy regulation method for skyrmion transport.  相似文献   
6.
The Pd‐catalyzed polycondensation of 4‐octylaniline with various dibromoarylenes was carried out under microwave heating. Microwave heating led to a decrease in the reaction time and an increase in the molecular weight of the polymers as compared to conventional heating. Microwave heating also allowed the catalyst loading to be reduced to 1 mol %, yielding polymerization results that were comparable to those under conventional heating and 5 mol % catalyst. Investigations regarding field‐effect transistors and organic photovoltaic cells using the obtained poly(arylamine) with azobenzene units revealed that increasing the molecular weight of the polymer led to improved device performance, including hole mobility and power conversion efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 536–542  相似文献   
7.
Small molecule additives have been shown to increase the device efficiency of conjugated polymer (donor) and fullerene derivative (acceptor) based organic solar cells by modifying the morphology of the device active layer. In this paper we conduct a systematic study of how additives affect the donor‐acceptor morphology using molecular dynamics simulations of blends of thiophene‐based oligomers, mimicking poly(3‐dodecylthiophene) (P3DDT) or poly(2,2′:5′,2”‐3,3”‐didocyl‐terthiophene) (PTTT), and fullerene derivatives with additives of varying length and chemical functionalization, mimicking experimentally used additives like methyl ester additives, diiodooctane, and alkanedithiols. We find that functionalization of additives with end groups that are attracted to acceptor molecules are necessary to induce increased donor‐acceptor macrophase separation. In blends where acceptors intercalate between oligomer alkyl side chains, functionalized additives decrease acceptor intercalation. Functionalized additives with shorter alkyl segments increase acceptor macrophase separation more than additives with same chemical functionalization but longer alkyl segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1046–1057  相似文献   
8.
Crystal structures of a series of organic–inorganic hybrid gold iodide perovskites, formulated as A2[AuII2][AuIIII4] [A=methylammonium (MA) ( 1 ) and formamidinium (FA) ( 2 )], A′2[I3]1−x[AuII2]x[AuIIII4] [A′=imidazolium (IMD) ( 3 ), guanidinium (GUA) ( 4 ), dimethylammonium (DMA) ( 5 ), pyridinium (PY) ( 6 ), and piperizinium (PIP) ( 7 )], systematically changed depending on the cation size. In addition, triiodide (I3) ions were partly incorporated into the AuI2 sites of 3 – 7 , whereas they were not incorporated into those of 1 and 2 . Such a difference comes from the size of the organic cation. Optical absorption spectra showed characteristic intervalence charge-transfer bands from AuI to AuIII species, and the optical band gap increased as the size of the cation became larger.  相似文献   
9.
The development of organic electron acceptor materials is one of the key factors for realizing high-performance organic solar cells (OSCs). Nonfullerene electron acceptors, compared to traditional fullerene acceptor materials, have gained much impetus owing to their better optoelectronic tunabilities and lower cost, as well as higher stability. Therefore, 5 three-dimensional (3D) cross-shaped acceptor materials having a spirobifullerene core flanked with 2,1,3-benzothiadiazole are designed from a recently synthesized highly efficient acceptor molecule SF(BR) 4 and are investigated in detail with regard to their use as acceptor molecules in OSCs. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed for the estimation of frontier molecular orbital (FMO) analysis, density of states analysis, reorganization energies of electron and hole, dipole moment, open-circuit voltage, photo-physical characteristics, and transition density matrix analysis. In addition, the structure-property relationship is studied, and the influence of end-capped acceptor modifications on photovoltaic, photo-physical, and electronic properties of newly selected molecules ( H1-H5 ) is calculated and compared with reference ( R ) acceptor molecule SF(BR) 4 . The structural tailoring at terminals was found to effectively tune the FMO band gap, energy levels, absorption spectra, open-circuit voltage, reorganization energy, and binding energy value in selected molecules H1 to H5 . The 3D cross-shaped molecules H1 to H5 suppress the intermolecular aggregation in PTB7-Th blend, which leads to high efficiency of acceptor material H1 to H5 in OSCs. Consequently, better optoelectronic properties are achieved from designed molecules H1 to H5 . It is proposed that the conceptualized molecules are superior than highly efficient spirobifullerene core-based SF(BR) 4 acceptor molecules and, thus, are recommended to experiments for future developments of highly efficient solar cells.  相似文献   
10.
The past research work devoted to ZnO nanocolloidal sol-gel route is reviewed. It highlights the cluster chemistry of alcoholic ZnAc2 solutions and the results of ZnO colloid growth investigations performed worldwide. Moreover, the role of doping and co-doping in the processing of functional ZnO coatings is discussed. The possibilities of tuning the optical properties are also reported with a particular attention to luminescence. The last part of this paper deals with electrical and photoelectrochemical properties of ZnO nanocrystals and their aggregates. This contribution is dedicated to the 80th birthday of Prof. Arnim Henglein from the Hahn-Meitner-Institut in Berlin and to the memory of Prof. Jacques Mugnier from the Université Claude-Bernard Lyon 1 in France.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号