首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using molecular dynamics simulations we study blends of oligomers of 2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophene, BTTT, and fullerene derivative based acceptors to understand the role of oligomer length and alkyl side chain (SC) length on the morphology of their blends. We use a validated coarse‐grained model of BTTT and fullerene derivatives presented in recent work along with direct comparison of morphology between simulations and experiments. In this article, we predict computationally that short alkyl SCs (6 alkyl groups) decrease the propensity of fullerene derivative acceptors to intercalate between SCs on the BTTT backbone compared to longer alkyl SCs (9 or 12 alkyl groups), and as a result increase acceptor aggregation. The decreasing acceptor intercalation and increasing acceptor aggregation do not significantly impact the positional or orientational order of the BTTT backbones. However, the BTTT oligomer backbones order better with increasing SC length in both neat systems and in blends, with the blends exhibiting higher positional order than neat systems. While these qualitative trends are similar both in 2mer blends and 4mer blends, we see a larger extent of acceptor intercalation and as a result, smaller acceptor cluster sizes in the 4mer blends. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 89–97  相似文献   

2.
For over two decades bulk‐heterojunction polymer solar cell (BHJ‐PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non‐fullerene PSCs developing very rapidly. The power conversion efficiencies of non‐fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene‐based PSCs. Among the various non‐fullerene PSCs, all‐polymer solar cells (APSCs) based on polymer donor‐polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long‐term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.  相似文献   

3.
A new liquid crystalline (LC) acceptor monomer 2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐3,6‐dithiophen‐2‐yl‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione (TDPPcbp) was synthesized by incorporating cyanobiphenyl mesogens into diketopyrrolopyrrole (DPP). The monomer was copolymerized with bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′] dithiophene (BDT) and N‐9′‐heptadecanylcarbazole (CB) donors to obtain donor–acceptor alternating copolymers poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione] (PBDTDPPcbp) and poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyano‐biphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3, 4‐c]pyrrole‐1,4‐dione] (PCBTDPPcpb) with reduced band gap, respectively. The LC properties of the copolymers, the effects of main chain variation on molecular packing, optical properties, and energy levels were analyzed. Incorporating the mesogen cyanobiphenyl units not only help polymer donors to pack well through mesogen self‐organization but also push the fullerene acceptor to form optimized phase separation. The bulk heterojunction photovoltaicdevicesshow enhanced performance of 1.3% for PBDTDPPcbp and 1.2% for PCBTDPPcbp after thermal annealing. The results indicate that mesogen‐controlled self‐organization is an efficient approach to develop well‐defined morphology and to improve the device performance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Ternary organic blends have potential in realizing efficient bulk heterojunction (BHJ) organic solar cells by harvesting a larger portion of the solar spectrum than binary blends. Several challenging requirements, based on the electronic structure of the components of the ternary blend and their nanoscale morphology, need to be met in order to achieve high power conversion efficiency in ternary BHJs. The properties of a model ternary system comprising two donor polymers, poly(3-hexylthiophene) (P3HT) and a furan-containing, diketopyrrolopyrrole-thiophene low-bandgap polymer (PDPP2FT), with a fullerene acceptor, PC61BM, were examined. The relative miscibility of PC61BM with P3HT and PDPP2FT was examined using diffusion with dynamic secondary ion mass spectrometry (dynamic SIMS) measurements. Grazing incidence small and wide angle X-ray scattering analysis (GISAXS and GIWAXS) were used to study the morphology of the ternary blends. These measurements, along with optoelectronic characterization of ternary blend solar cells, indicate that the miscibility of the fullerene acceptor and donor polymers is a critical factor in the performance in a ternary cell. A guideline that the miscibility of the fullerene in the two polymers should be matched is proposed and further substantiated by examination of known well-performing ternary blends. The ternary blending of semiconducting components can improve the power conversion efficiency of bulk heterojunction organic photovoltaics. The blending of P3HT and PDPP2FT with PC61BM leads to good absorptive coverage of the incident solar spectrum and cascading transport energy levels. The performance of this ternary blend reveals the impact of the miscibility of PC61BM in each polymer as a function of composition, highlighting an important factor for optimization of ternary BHJs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 237–246  相似文献   

5.
The thin film phase behavior of ternary blends consisting of symmetric poly(styrene) (PS)-b-poly(dimethylsiloxane)(PDMS), PS, and PDMS was investigated using X-ray reflectivity (XRR) and atomic force microscopy (AFM). This system is strongly segregated, and the homopolymers are approximately the same length as the corresponding blocks of the copolymer. The XRR and AFM data are used to quantify changes in domain spacing (L) and morphology evolution with increasing homopolymer content (Φ H). In 100 nm thick films, from Φ H = 0 to 0.20, the system maintains a perfect parallel lamellar structure and domains swell as predicted based on theory; however, from Φ H = 0.30 to 0.50, a morphology transition to a “dot pattern” morphology (tentatively identified as perforated lamellae) and mixed morphologies were observed before macrophase separation. In thicker films, dot patterns were observed for a broad range of Φ H before macrophase separation. The absence of the bicontinuous microemulsion phase reported for bulk blends and thin films of perpendicular lamellae and the presence of dot patterns/perforated lamellae are attributed to preferential migration of the PDMS homopolymer to the wetting layers located at the substrate and free air interfaces, which leads to an asymmetric composition within the film and morphology transition. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1443–1451  相似文献   

6.
Thin films composed of polycyclohexane (PCHE), zinc(II)‐5,10,15,20‐tetra‐(2‐naphthyl)porphyrin (ZnTNpP), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are prepared to investigate their potential for the controlled self‐assembly of a porphyrin/fullerene donor–acceptor complex in a polymer thin film. The compatibilities of PCHE/PCBM (p), PCHE/ZnTNpP (q), and ZnTNpP/PCBM (r) in these blends have a significant effect on the dispersion of the ZnTNpP/PCBM donor–acceptor complex in the PCHE thin film. When the compatibilities are p << q, r, and q ≈ r, the ZnTNpP/PCBM donor–acceptor complex is formed between the PCHE and PCBM phases. This concept to form a controlled self‐assembly of the ZnTNpP/PCBM donor–acceptor complex may be applied to various combinations of porphyrin/fullerene systems in polymer thin film solar cells to achieve excellent performance. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 743–746  相似文献   

7.
Donor‐acceptor conjugated polymers containing a new imide‐functionalized naphthodithiophene (INDT) as the acceptor unit and a 2,2'‐bithiophene with varied substituents as the donor unit have been synthesized. The bandgaps of these polymers depend strongly on the dihedral angle of the 2,2'‐bithiophene unit. The 3,3'‐dialkoxy substitution (polymers PDOR / PBOR ) leads to near planar bithiophene conformation due to the well‐known S–O short contact, while the 3,3'‐dialkyl substitution (polymer PDR ) results in significant twisting due to the steric effect. Consequently PDOR / PBOR shows the lowest bandgap of 1.82/1.85 eV while PDR has a bandgap of 2.38 eV. Bulk‐heterojunction solar cells of the polymer/fullerene blends have been fabricated. Preliminary results show that PBOR gives the best device performance with power conversion efficiencies as high as 2.45% in air without any thermal annealing treatment, indicating the promising potential of INDT‐containing conjugated polymers for efficient solar cells. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3818–3828  相似文献   

8.
For an increased lifetime of polymer:fullerene bulk heterojunction (BHJ) solar cells, an understanding of the chemical and morphological degradation phenomena taking place under operational conditions is crucial. Phase separation between polymer and fullerene induced by thermal stress has been pointed out as a major issue to overcome. While often the effect of thermal stress on the morphology of polymer:fullerene BHJ is investigated in the darkness, here we observe that light exposure slows down fullerene crystallization and phase separation induced at elevated temperatures. The observed photo‐stabilizing effect on active layer morphology is quite independent on the polymer and is attributed to light‐induced dimerization of the fullerene. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1209–1214  相似文献   

9.
We have investigated the effect of solvent–polymer interaction on the morphology, crystallinity, and device performance of poly‐(3‐hexylthiophene) (P3HT) and poly{2,7‐(9,9‐didodecyl‐fluorene)‐alt‐5,5‐[4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothia‐diaole]} (PF12TBT) blend system. 3‐Hexylthiophene (3‐HT), which had the similar structural units with both donor and acceptor materials, was chosen as the solvent additive to be added into the main solvent chlorobenzene (CB), to adjust the solvent–polymer interaction. With the 3‐HT percentage increasing from 5 to 30% in CB solution, the solvent–polymer interaction between polymer and solvent molecules decreased slightly according to the calculated solubility parameters (δ) and interaction parameters (χ12). As a result, nanoscale phase‐separated and interconnected morphology with decreased domain size of both donor and acceptor was formed. Meanwhile, the order of P3HT molecule was enhanced which resulted from the extended film drying time and increased molecular planarity after incorporation of 3‐HT. The power conversion efficiency (PCE) had a gradual improvement to 1.08% as the 3‐HT percentage reached 10%, which can be attributed to the enhanced short‐circuit current (Jsc) and fill factor (FF). However, when the 3‐HT percentage exceeded 20%, the decreased Jsc and FF ultimately decreased the PCE. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 288–296  相似文献   

10.
The effect of solvent blending on the performance of an anthracene‐containing poly(p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) backbone‐based donor polymer with asymmetrically substituted branched 2‐ethylhexyloxy and methyloxy side‐chains in bulk heterojunction solar cells is reported. This copolymer yields relatively high open‐circuit voltages with fullerene‐based electron acceptors. We systematically studied the thin‐film blend morphology and solar cell performance as a function of solvent composition (chlorobenzene to chloroform ratio) and polymer to [6,6]‐phenyl C61‐butyric acid methylester (PCBM) ratio. We combined photophysical investigations with atomic force microscopy and grazing incidence wide‐angle X‐ray scattering to elucidate the solid‐state morphology in thin films. In the investigated polymer system, the blend morphology becomes independent of the supporting solvent for high PCBM concentrations. Deposition from solvent blends rather than from pure chlorobenzene facilitates the beneficial phase separation between polymer and PCBM, leading to improved charge transport properties (short‐circuit currents) at lower PCBM concentrations. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 868–874  相似文献   

11.
We report on the charge transport and injection phenomena of (E,E,E,E)‐1,4‐bis[(4‐styryl)styryl]‐2‐methoxy‐5‐(2′‐ethylhexoxy)benzene (MEH‐OPV5) sandwiched between asymmetric contacts. The hole mobility of MEH‐OPV5 was determined by means of transient electroluminescence. The steady‐state current was injection‐limited. The electric field and temperature dependence of the current were quantitatively described by a phenomenological injection model of thermally assisted charge‐carrier tunneling in a one‐dimensional chain of hopping sites. Furthermore, we report on the photovoltaic properties of thin‐film photovoltaic cells on the basis of donor–acceptor heterojunctions. MEH‐OPV5 and buckminster fullerene were used as the donor and acceptor materials, respectively. The emphasis was on the role of morphology in such devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2665–2673, 2003  相似文献   

12.
This work describes how physicochemical properties of salicylate‐based poly(anhydride‐esters) (PAEs) can be tuned for drug delivery and optimized by comparing copolymerization with polymer blending. These alterations reduced the lag time of drug release, while still maintaining a long‐term drug release profile. The chemical composition of the copolymers and polymer blends was determined by proton nuclear magnetic resonance and additional properties such as molecular weight, glass transition temperature and contact angle measurements were obtained. In vitro salicylic acid release from the copolymers and blends is studied in an environment mimicking physiological conditions. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 685–689  相似文献   

13.
The effects of the phase‐separation temperature and time on the mechanical properties and morphology of poly(methyl methacrylate)/poly(styrene‐co‐maleic anhydride with 10 wt% ethyl acrylate) (SMA) blends were studied. Two compositions (20/80 and 40/60 w/w SMA/PMMAe) were prepared with a miniature twin‐screw extruder. Compared with those of the miscible blends, the Young's modulus values of the blends increased after the phase separation of the 40/60 SMA/PMMAe blend and within the early stage of spinodal decomposition of the 20/80 SMA/PMMAe blend. The mechanical properties, in terms of the tensile strength at break and the elongation, were better for the miscible blends than for the phase‐separation blends. This was believed to be the result of changes in the composition and molecular reorganization. The changes in the phase‐separating domains of both compositions, as observed by transmission electron microscopy, had no significant influence on the tensile moduli. Detailed studies of the morphology revealed a cocontinuous structure, indicating that the blends underwent spinodal decomposition. A morphological comparison of the two compositions illustrated the validity of the level rule. The growth rate of the droplet size was determined by approximation from the light scattering data and by direct measurements with transmission electron microscopy. The discrepancies observed in the droplet size growth rate were attributed to heat variations induced by the different sample thicknesses and heat transfer during the investigation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 886–897, 2004  相似文献   

14.
Donor–acceptor block copolymers (BCP), incorporating poly(3‐hexylthiophene) (P3HT), and a polystyrene copolymer with pendant fullerenes (PPCBM) provide desired stable nanostructures, but mostly do not exhibit balanced charge carrier mobilities. This work presents an elegant approach to match hole and electron transport in BCP by blending with molecular PCBM without causing any macrophase separation. An insufficient electron mobility of PPCBM can be widely compensated by adding PCBM which is monitored by the space‐charge limited current method. Using X‐ray diffraction, atomic force microscopy, and differential scanning calorimetry, we verify the large miscibility of the PPCBM:PCBM blend up to 60 wt % PCBM load forming an amorphous, molecularly mixed fullerene phase without crystallization. Thus, blending BCP with PCBM substantially enhances charge transport achieving an electron mobility of μe=(3.2 ± 1.7) × 10?4 cm2V?1s?1 and hole mobility of μh=(1.8 ± 0.6) × 10?3 cm2V?1s?1 in organic field‐effect transistors (OFET). The BCP:PCBM blend provides a similarly high ambipolar charge transport compared to the established P3HT:PCBM system, but with the advantage of an exceptionally stable morphology even for prolonged thermal annealing. This work demonstrates the feasibility of high charge transport and stable morphology simultaneously in a donor–acceptor BCP by a blend approach. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1125–1136  相似文献   

15.
This article reports the results of an investigation into the time‐dependent morphological and rheological changes that accompany the in‐situ polymerization of blends composed of poly(hydroxyether of bisphenol A) (phenoxy) and poly(styrene‐co‐acrylonitrile) (SAN). The rheological behavior was monitored continuously during the in‐situ polymerization, whereas the miscibility and phase structure of blends formed in situ were examined at discrete stages of polymerization by differential scanning calorimetry and transmission electron microscopy. In the blend with 30 wt % SAN, a co‐continuous blend morphology was associated with gradual changes in the dynamic moduli, suggesting that phase separation proceeded by spinodal decomposition (SD). In contrast, phenoxy‐rich dispersions were uniformly dispersed in a continuous SAN‐rich matrix in the blend with 50 wt % SAN, and the corresponding rheological signature revealed a sharp initial increase in the dynamic moduli, followed by slower growth after long times, indicative of phase separation via nucleation and growth (NG). The rheological property changes are closely related to morphology development and mechanisms of phase separation induced duringin‐situ polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2614–2619, 2007  相似文献   

16.
Block copolymers have the potential to control the interfacial and mesoscopic structure in the active layer of organic photovoltaics and consequently enhance device performance beyond systems which rely on physical mixtures. When utilized as the active layer, poly(3‐hexylthiophene‐2,5‐diyl)‐block‐poly((9,9‐bis‐(2‐octyldodecyl)fluorene‐2,7‐diyl)‐alt‐(4,7‐di(thiophene‐2‐yl)?2,1,3‐benzothiadiazole)?5′,5″‐diyl) donor–acceptor block copolymers have recently demonstrated 3% power conversion efficiencies in devices. Nevertheless, the role of the interfacial structure on charge transfer processes remains unclear. Using density functional theory, we examined charge transfer rate constants in model interfaces of donor–acceptor block copolymers. Our results demonstrate that intermolecular charge recombination can depend on the interfacial breadth, where sharp interfaces (ca. 1 nm) suppress intermolecular charge recombination by orders of magnitude. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1224–1230  相似文献   

17.
The bulk order in donor–acceptor poly(benzodithiophene‐benzotriazole) was improved by two different post‐treatment procedures applied to the specimen. Two‐dimensional wide‐angle X‐ray scattering was used to investigate the structural changes after treatment. After post‐treatment the polymer turned into a highly crystalline morphology with well‐resolved and intensive π‐stacking reflections which were absent in the pristine sample. To understand the ordering mechanisms taking place during the two post‐treatment procedures, structural parameters like coherence length and paracrystallinity were extracted from the X‐ray data indicating the impact on crystallite size and cumulative lattice disorder. During temperature annealing the intralayer packing transforms from amorphous to highly ordered. On the other hand, solvent vapor annealing enhances in higher extent the interlayer organization due to interpenetration of solvent molecules between alkyl side chains. These results provide important insights for the morphology optimization of semicrystalline conjugated polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2327–2334.  相似文献   

18.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   

19.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

20.
All-polymer solar cells based on blends of the low band gap polymers poly{[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]} (PTB7) and poly{[N,N-9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)} (P(NDI2OD-T2)) are demonstrated. The use of the donor polymer PTB7 instead of poly(3-hexylthiophene) results in a higher open-circuit voltage and an overall spectral response better matched to the solar spectrum. A power conversion efficiency of 1.1% is reported with a peak external quantum efficiency of 18% at a wavelength of 680 nm. The microstructure of PTB7:P(NDI2OD-T2) blends is also investigated using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS), near-edge X-ray fine-structure (NEXAFS) spectroscopy, atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). GIWAXS measurements show that PTB7:P(NDI2OD-T2) blends contain P(NDI2OD-T2) crystallites with a (100) thickness of 9.5 nm dispersed in an amorphous PTB7 matrix. STXM measurements indicate a lack of mesoscale phase separation, with AFM and NEXAFS measurements revealing a P(NDI2OD-T2)-rich top surface with fibrillar morphology. These results indicate that the pairing of low band gap polymers as both donor and acceptor polymers in all-polymer solar cells may be an effective strategy for realizing high-efficiency all-polymer solar cells. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号