首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  国内免费   3篇
物理学   5篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
排序方式: 共有5条查询结果,搜索用时 11 毫秒
1
1.
用从头计算方法研究了在Bi2Te3体系采用过渡金属掺杂从而诱导出磁性的可能性.用一个过渡金属原子置换一个Bi原子之后,可以在该体系中产生磁矩,这主要是由于过渡金属原子的3d轨道电子的自旋极化导致的.当一个Ti、V、Cr、Mn和Fe原子分别替代一个Bi原子时,体系显示的磁矩分别为0.92、1.97、2.97、4.04和4.98 μB.当引入两个过渡金属原子代替两个Bi原子的时候,交换耦合的特性取决于取代Bi原子的分布;代替的Bi原子的位置在Bi1和Bi5的位置时,这两个过渡金属原子之间的距离为11.52 ?, Bi1.84TM0.16Te3体系能量最稳定并且表现出铁磁性耦合.  相似文献   
2.
The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory.An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism.By comparing the formation energies for Na,Bi and Ti vacancy,the Na vacancy is more stable than the others.Therefore,we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy.Among the five physisorption configurations we considered,the most likely adsorption position is Na vacancy.The O2 adsorption enhances the magnetism of the system.The contribution of spin polarization is mainly from the O 2p orbitals.The characteristics of exchange coupling are also calculated,which show that the ferromagnetic coupling is favorable.Compared with the previous calculation results,our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably,because of taking into account adsorbed oxygen and cation vacancies.Moreover,our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.  相似文献   
3.
A series of high quality single crystalline epitaxial Zn 0.95 Co 0.05 O thin films is prepared by molecular beam epitaxy.Superparamagnetism and ferromagnetism are observed when the donor density is manipulated in a range of 10 18 cm 3-10 20 cm 3 by changing the oxygen partial pressure during film growth.The conduction shows variable range hopping at low temperature and thermal activation conduction at high temperature.The ferromagnetism can be maintained up to room temperature.However,the anomalous Hall effect is observed only at low temperature and disappears above 160 K.This phenomenon can be attributed to the local ferromagnetism and the decreased optimal hopping distance at high temperatures.  相似文献   
4.
The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom substitution for a Ti atom produces magnetic moments, which are due to the spin-polarization of transition-metal 3d electrons. The characteristics of exchange coupling are also calculated, which shows that in Cr-/Mn-/Fe-/Co-doped Na0.5Bi0.5TiO3 system, the antiferromagnetic coupling is favorable. The results can successfully explain the experimental phenomenon that, in Mn-/Fe-doped Na0.5Bi0.5TiO3 system, the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions. Unexpectedly, we find the Na0.5Bi0.5Ti0.67V0.33iO3 system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00 μB, which indicates that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3. This may be a new way to produce low temperature multiferroic materials.  相似文献   
5.
A series of high quality single crystalline epitaxial Zn0.95Co0.05O thin films is prepared by molecular beam epitaxy. Superparamagnetism and ferromagnetism are observed when the donor density is manipulated in a range of 1018 cm-3-1020 cm-3 by changing the oxygen partial pressure during film growth. The conduction shows variable range hopping at low temperature and thermal activation conduction at high temperature. The ferromagnetism can be maintained up to room temperature. However, the anomalous Hall effect is observed only at low temperature and disappears above 160 K. This phenomenon can be attributed to the local ferromagnetism and the decreased optimal hopping distance at high temperatures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号