首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   9篇
化学   103篇
力学   4篇
物理学   45篇
  2022年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   7篇
  2013年   8篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   16篇
  2004年   7篇
  2003年   8篇
  2002年   10篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1977年   5篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1968年   3篇
  1967年   3篇
  1966年   1篇
排序方式: 共有152条查询结果,搜索用时 484 毫秒
1.
A new class of ferroelectric coordination‐based polymers has been developed by the self‐assembly of lipophilic zinc porphyrin ( ZnP ) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination‐based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization–electric field (PE) loops and inversion current peaks in current–voltage (IV) loops. The observed ferroelectric properties are explainable by flip–flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive‐up–negative‐down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics.  相似文献   
2.
Heusler phases, including the full‐ and half‐Heusler families, represent an outstanding class of multifunctional materials on account of their great tunability in compositions, valence electron counts (VEC), and properties. Here we demonstrate a systematic design of a series of new compounds with a 2×2×2 superstructure of the half‐Heusler unit cell in X–Y–Z (X=Fe, Ru, Co, Rh, Ir; Y=Zn, Mn; Z=Sn, Sb) systems. Their structures were solved by using both powder and single‐crystal X‐ray diffraction, and also directly observed by using high‐angle annular dark‐field imaging in a scanning transmission electron microscope (HAADF‐STEM). The VEC values of these new compounds span a wide and continuous range comparable to those for the full‐ and half‐Heusler families, thereby implying tunability in compositions and physical properties in the superstructure. In fact, we observed abnormal electrical properties and a ferromagnetic semiconductor‐like behavior with a high and tunable Curie temperature in these superstructures.  相似文献   
3.
This paper describes the verification of the accuracy of residual stress measurement by the hole-drilling method. The strain measurement is simulated by the use of the indirect fictitious-boundary integral method. As an example, a finite rectangular plate subjected to initial stress is treated, and a simulated measurement of the residual stress is made using the strain relieved during hole drilling. The accuracy of residual stress measurement is estimated by comparing the simulated measured residual stress with the actual residual stress, i.e., the given initial stress. The results are shown for various distances and angles of strain gages. Also, the influences of the eccentricity of the hole from the center of the strain gages and the effect of a boundary near the hole are examined.  相似文献   
4.
5.
6.
A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X-ray diffraction photographs taken utilizing the fixed-film and fixed-crystal method for the metallic state revealed the presence of diffuse scattering with line shapes parallel to the a* axis indexed as (-, n + 0.5, l) (n; integer). Diffuse scattering with k = n + 0.5 is considered to originate from the 2-fold periodical ordering corresponding to -Pt(2+)-Pt(2+)-I-Pt(3+)-Pt(3+)-I- or -Pt(2+)-Pt(3+)-I-Pt(3+)-Pt(2+)-I- in an extremely short time scale. Diffuse lines corresponding to 2-D ordering progressively decrease in intensity below 252 K and are converted to the diffuse planes corresponding to 1-D ordering near T(M-S). Furthermore, diffuse planes condensed into superlattice reflections below T(M-S). Polarized Raman spectra show temperature dependence through a drastic low-energy shift of the Pt-I stretching mode and also through broadening of bands above T(M-S).  相似文献   
7.
8.
As advanced negative electrodes for powerful and useful high‐voltage bipolar batteries, an intercalated metal–organic framework (iMOF), 2,6‐naphthalene dicarboxylate dilithium, is described which has an organic‐inorganic layered structure of π‐stacked naphthalene and tetrahedral LiO4 units. The material shows a reversible two‐electron‐transfer Li intercalation at a flat potential of 0.8 V with a small polarization. Detailed crystal structure analysis during Li intercalation shows the layered framework to be maintained and its volume change is only 0.33 %. The material possesses two‐dimensional pathways for efficient electron and Li+ transport formed by Li‐doped naphthalene packing and tetrahedral LiO3C network. A cell with a high potential operating LiNi0.5Mn1.5O4 spinel positive and the proposed negative electrodes exhibited favorable cycle performance (96 % capacity retention after 100 cycles), high specific energy (300 Wh kg?1), and high specific power (5 kW kg?1). An 8 V bipolar cell was also constructed by connecting only two cells in series.  相似文献   
9.
The goal of this feasibility study was to examine whether sonoporation assisted transduction of siRNA could be used to ameliorate arthritis locally. If successful, such approach could provide an alternative treatment for the patients that have or gradually develop adverse response to chemical drugs. Tumor necrosis factor alpha (TNF-α) produced by synovial fibroblasts has an important role in the pathology of rheumatoid arthritis, inducing inflammation and bone destruction. In this study, we injected a mixture of microbubbles and siRNA targeting TNF-α (siTNF) into the articular joints of rats, and transduced siTNF into synovial tissue by exposure to a collimated ultrasound beam, applied through a probe 6 mm in diameter with an input frequency of 3.0 MHz, an output intensity of 2.0 W/cm2 (spatial average temporary peak; SATP), a pulse duty ratio of 50%, and a duration of 1 min. Sonoporation increased skin temperature from 26.8 °C to 27.3 °C, but there were no adverse effect such as burns. The mean level of TNF-α expression in siTNF-treated knee joints was 55% of those in controls. Delivery of siTNF into the knee joints every 3 days (i.e., 7, 10, 13, and 16 days after immunization) by in vivo sonoporation significantly reduced paw swelling on days 20–23 after immunization. Radiographic scores in the siTNF group were 56% of those in the CIA group and 61% of those in the siNeg group. Histological examination showed that the number of TNF-α positive cells was significantly lower in areas of pannus invasion into the ankle joints of siTNF- than of siNeg-treated rats. These results indicate that transduction of siTNF into articular synovium using sonoporation may be an effective local therapy for arthritis.  相似文献   
10.
Silica (SiO2)-coated ceria (CeO2) nanoparticles were prepared using water-in-oil microemulsion. Polyoxyethylene (15) cetylether and cyclohexane were used as a surfactant and organic solvent. SiO2-coated CeO2 nanoparticles were obtained by hydrolysis of metal alkoxide (tetraethylorthosilicate, TEOS) in the solution containing CeO2 precursor nanoparticles. The effects of CeO2 sources (Ce metal salt) and CeO2 particle-forming agents on the morphology of SiO2–CeO2 particles were investigated. Observation via transmission electron microscopy revealed that the type of particle-forming agent affected the nanoparticles' morphology and that CeO2 nanoparticles were spherically coated with SiO2 when using oxalic acid ((COOH)2) as a particle-forming agent of CeO2. Furthermore, the transmittance of the particles was high in the visible region (above 400 nm) and decreased in the ultraviolet region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号