首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3808篇
  免费   144篇
  国内免费   16篇
化学   3155篇
晶体学   26篇
力学   28篇
数学   221篇
物理学   538篇
  2023年   17篇
  2022年   17篇
  2021年   39篇
  2020年   43篇
  2019年   51篇
  2018年   39篇
  2017年   40篇
  2016年   75篇
  2015年   76篇
  2014年   94篇
  2013年   208篇
  2012年   205篇
  2011年   251篇
  2010年   137篇
  2009年   155篇
  2008年   270篇
  2007年   270篇
  2006年   235篇
  2005年   253篇
  2004年   187篇
  2003年   179篇
  2002年   132篇
  2001年   54篇
  2000年   50篇
  1999年   20篇
  1998年   20篇
  1997年   36篇
  1996年   29篇
  1995年   36篇
  1994年   31篇
  1993年   44篇
  1992年   32篇
  1991年   32篇
  1990年   39篇
  1989年   31篇
  1988年   27篇
  1987年   29篇
  1986年   21篇
  1985年   63篇
  1984年   51篇
  1983年   24篇
  1982年   32篇
  1981年   37篇
  1980年   37篇
  1979年   50篇
  1978年   30篇
  1977年   25篇
  1976年   21篇
  1975年   21篇
  1974年   26篇
排序方式: 共有3968条查询结果,搜索用时 15 毫秒
1.
2.
Novel poly(spiroorthocarbonate)s [poly(SOC)]s having a Cardo or bent structure were synthesized by polycondensation of several bis‐catechols having fluorene (BCFL), spirobisindane (BCSPI), or spirobischromane (BCSPC) in the structure with 2,2,6,6‐tetrachlorobenzo[1,2‐d:4,5‐d’]bis[1,3]dioxole (4ClBD). Synthesis of poly(SOC)s was confirmed by NMR and IR spectrometry. The poly(SOC)s obtained from BCFL or BCSPC were soluble in common organic solvents. The glass transition temperature of the poly(SOC)s was not detected by differential scanning calorimetry (DSC) in the range of 50–300 °C. The 10 wt % decomposition temperature of the poly(SOC)s was found to be above 400 °C. These results indicated the high thermal stability of the poly(SOC)s. Soluble poly(SOC)s could be possessed to form a film on a glass plate by the spin coat method. The obtained polymer films were 0.2 μm in thickness with 95% light transmission in the optical wavelength range. These results suggested that the Cardo or bent structure may block the packing of the main‐chain of the structure, which improves the solubility of the polymers, increases transparency, and enhances the thermal stability of SOCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1409‐1416  相似文献   
3.
The chemical properties of carbide‐cluster metallofullerenes (CCMFs) remain largely unexplored, although several new members of CCMFs have been discovered recently. Herein, we report the reaction between Sc2C2@C3v(8)‐C82, which is viewed as a prototypical CCMF because of its high abundance, and 3‐triphenylmethyl‐5‐oxazolidinone ( 1 ) to afford the corresponding pyrrolidino derivative Sc2C2@C3v(8)‐C82(CH2)2NTrt ( 2 ; Trt=triphenylmethyl). Single‐crystal X‐ray crystallography studies of 2 revealed that the reaction takes place at a [6,6]‐bond junction, which is directly over the encapsulated C2 unit and is far from either of the two scandium atoms. On the basis of theoretical calculations and by considering previously reports, we have found that a hexagonal carbon ring on the cage of Sc2C2@C3v(8)‐C82 is highly reactive toward different reagents due to the overlap of high p‐orbital axis vector (POAV) angles and large LUMO coefficients. We propose that this highly concentrated area of reactivity is generated by the encapsulation of the Sc2C2 cluster because this region is absent from the empty fullerene C3v(8)‐C82. Moreover, the absorption and electrochemical results confirm that derivative 2 is more stable than pristine Sc2C2@C3v(8)‐C82, thus illuminating its potential applications.  相似文献   
4.
The chemical modification of proteins is an effective technique for manipulating the properties and functions of proteins, and for creating protein-based materials. The N-terminus is a promising target for single-site modification that provides modified proteins with uniform structures and properties. In this paper, a copper(II)-mediated aldol reaction with 2-pyridinecarboxaldehyde (2-PC) derivatives is proposed as an operationally simple method to selectively modify the N-terminus of peptides and proteins at room temperature and physiological pH. The copper(II) ion activates the N-terminal amino acids by complexation with an imine of the N-terminal amino acid and 2-PCs, realizing the selective formation of the nucleophilic intermediate at the N-terminus. This results in a stable carbon-carbon bond between the 2-PCs and the α-carbon of various N-terminal amino acids. The reaction is applied to four different proteins, including biopharmaceuticals such as filgrastim and trastuzumab. The modified trastuzumab retains the human epidermal growth factor receptor 2 recognition activity.  相似文献   
5.
In this work, we investigated terpyridine (tpy)/Zn(II) complexation for the crosslinking of polymeric micelles of the branched poly(ethylene oxide)–poly(propylene oxide) block copolymer Tetronic® 1107 (T1107) in water and produce physically stable amphiphilic luminescent nanogels. Nanoparticles displayed a size of 235 ± 25 and 318 ± 57 nm before and after Zn(II) crosslinking, respectively, as measured by dynamic light scattering. High-resolution scanning electron microscopy analysis revealed the multimicellar nature of the crosslinked nanoparticles. In addition, Zn(II) complexation prevented nanoparticle disassembly after extreme dilution below the critical micellar concentration and reduced the minimum concentration required for the reverse thermal gelation of concentrated aqueous T1107 systems. The cell compatibility and uptake were initially assessed in the murine macrophage cell line RAW 264.7. Results showed that complexation increases the cell compatibility of the nanoparticles with respect to the non-complexed counterparts. In addition, non-crosslinked nanoparticles accumulated in the cell membrane, while the complexed ones were internalized, as observed by confocal laser scanning fluorescence microscopy. Then, the antiproliferative activity of the crosslinked nanoparticles was confirmed in the rhabdomyosarcoma cell line Rh30; their inhibitory concentration 50 (IC50) being 101 μg/mL (6.7 μM). Finally, the encapsulation and release of the hydrophobic antiretroviral efavirenz was characterized in vitro. Complexation slightly reduced the release kinetics with respect to the pristine nanoparticles. Overall results demonstrate the promise of this simple modification strategy to produce amphiphilic nanogels with a set of advantageous physicochemical, optical, and biological properties.  相似文献   
6.
Transition Metal Chemistry - The synthesis, structure and photophysical properties of dinuclear bis(phenylpyridine)(salicylaldiminato)Ir(III) complexes bearing polymethylene linkers are described...  相似文献   
7.
We established a gas-phase, elementary reaction model for chemical vapor deposition of silicon carbide from methyltrichlorosilane (MTS) and H2, based on the model developed at Iowa State University (ISU). The ISU model did not reproduce our experimental results, decomposition behavior of MTS in the gas phase in an environment with H2. Therefore, we made several modifications to the ISU model. Of the reactions included in existing models, 236 were lacking in the ISU model, and thus were added to the model. In addition, we modified the rate constants of the unimolecular reactions and the recombination reactions, which were treated as a high-pressure limit in the ISU model, into pressure-dependent rate expressions based on the previous reports (to yield the ISU+ model), for example, H2(+M) → H + H(+M), but decomposition behavior remained poorly reproducible. To incorporate the pressure dependencies of unimolecular decomposition rate constants, and to increase the accuracies of these constants, we recalculated the rate constants of five unimolecular decomposition reactions of MTS using the Rice-Ramsperger-Kassel-Marcus method at the CBS-QB3 level. These chemistries were added to the ISU+ model to yield the UT2014 model. The UT2014 model reproduced overall MTS decomposition. From the results of our model, we confirmed that MTS mainly decomposes into CH3 and SiCl3 at the temperature around 1000°C as reported in the several studies.  相似文献   
8.
Aggregation-induced emission (AIE) is a fascinating phenomenon because of the applications of luminescent materials in the aggregated state, which exploit the large structural changes of the molecules in the excited state. Recently, it was reported that triphenylphosphane derivatives show AIE behavior in which they undergo potentially large structural changes in the excited state. Inspired by this report, photoinduced pyramidal inversion behavior of phosphanes was investigated. In photochemical experiments, the prepared P-stereogenic phosphanes exhibited photoracemization in dilute solution, and a negative correlation was observed between the photoracemization and the AIE phenomenon. Theoretical computations revealed that the inversion barrier in the excited state was much smaller than that in the ground state. This is the first report on the photoinduced pyramidal inversion behavior of phosphanes, which will provide new and unexplored applications.  相似文献   
9.
The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII(opda)3]2+ (hs- [6R] 2+), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII(bqdi)3]2+ (bqdi: o-benzoquinodiimine) (ls- [0R] 2+) formation by O2 oxidation of hs- [6R] 2+, accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls- [0R] [PF6]2 can be reduced by hydrazine giving ls-[FeII(opda)(bqdi)2][PF6]2 (ls- [2R] [PF6]2) and ls-[FeII(opda)2(bqdi)][PF6]2 (ls- [4R] [PF6]2) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号