首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5753篇
  免费   200篇
  国内免费   18篇
化学   4261篇
晶体学   70篇
力学   70篇
综合类   2篇
数学   282篇
物理学   1286篇
  2023年   34篇
  2021年   53篇
  2020年   84篇
  2019年   100篇
  2018年   74篇
  2017年   38篇
  2016年   125篇
  2015年   127篇
  2014年   121篇
  2013年   315篇
  2012年   301篇
  2011年   318篇
  2010年   208篇
  2009年   205篇
  2008年   308篇
  2007年   333篇
  2006年   302篇
  2005年   322篇
  2004年   262篇
  2003年   238篇
  2002年   184篇
  2001年   117篇
  2000年   99篇
  1999年   76篇
  1998年   50篇
  1997年   53篇
  1996年   77篇
  1995年   55篇
  1994年   57篇
  1993年   78篇
  1992年   74篇
  1991年   75篇
  1990年   55篇
  1989年   59篇
  1988年   52篇
  1987年   56篇
  1986年   52篇
  1985年   93篇
  1984年   83篇
  1983年   44篇
  1982年   61篇
  1981年   51篇
  1980年   58篇
  1979年   61篇
  1978年   51篇
  1977年   37篇
  1976年   50篇
  1975年   30篇
  1974年   34篇
  1973年   33篇
排序方式: 共有5971条查询结果,搜索用时 15 毫秒
1.
The crystallization of a complex having electron transfer properties in a polar space group can induce the polarization switching of a crystal in a specific direction, which is attractive for the development of sensors, memory devices, and capacitors. Unfortunately, the probability of crystallization in a polar space group is usually low. Noticing that enantiopure compounds crystallize in Sohncke space groups, this paper reports a strategy for the molecular design of non-ferroelectric polarization switching crystals based on the use of intramolecular electron transfer and chirality. In addition, this paper describes the synthesis of a mononuclear valence tautomeric (VT) cobalt complex bearing an enantiopure ligand. The introduction of enantiomer enables the crystallization of the complex in the polar space group (P21). The polarization of the crystals along the b-axis direction is not canceled out and the VT transition is accompanied by a change in the macroscopic polarization of the polar crystal. Polarization switching via electron transfer is realized at around room temperature.  相似文献   
2.
The formal enantioselective umpolung addition of dialkyl phosphites to 2-azaaryl ketones was developed under Brønsted base catalysis. The reaction involves the enantioselective protonation of the transient α-oxygenated (2-azaaryl)methyl anion generated through the 1,2-addition of the anion of dialkyl phosphite to the 2-azaaryl ketone and the subsequent [1,2]-phospha-Brook rearrangement. A chiral bis(guanidino)iminophosphorane organosuperbase efficiently catalyzed the reaction to provide enantio-enriched phosphates in high yields with good to high enantioselectivities. This is a rare example of the catalytic enantioselective protonation of transient carbanions other than enolates, constructing a trisubstituted stereogenic center α to 2-azaarenes.  相似文献   
3.
Ru is an important catalyst in many types of reactions. Specifically, Ru is well known as the best monometallic catalyst for oxidation of carbon monoxide (CO) and has been practically used in residential fuel cell systems. However, Ru is a minor metal, and the supply risk often causes violent fluctuations in the price of Ru. Performance‐improved and cost‐reduced solid‐solution alloy nanoparticles of the Cu‐Ru system for CO oxidation are now presented. Over the whole composition range, all of the CuxRu1?x nanoparticles exhibit significantly enhanced CO oxidation activities, even at 70 at % of inexpensive Cu, compared to Ru nanoparticles. Only 5 at % replacement of Ru with Cu provided much better CO oxidation activity, and the maximum activity was achieved by 20 at % replacement of Ru by Cu. The origin of the high catalytic performance was found as CO site change by Cu substitution, which was investigated using in situ Fourier transform infrared spectra and theoretical calculations.  相似文献   
4.
Biradicaloid compounds with an open-shell ground state have been the subject of intense research in the past decade. Although diindenoacenes are one of the most developed families, only a few examples have been reported as active layers in organic field-effect transistors (OFETs) with a charge mobility of around 10−3 cm2 V−1 s−1 due to a steric disadvantage of the mesityl group to kinetically stabilize compounds. Herein, we disclose our efforts to improve the charge transport of the diindenoacene family based on hexahydro-diindenopyrene (HDIP) derivatives with different annelation modes for which the most reactive position has been functionalized with (triisopropylsilyl)ethynyl (TIPS) groups. All the HDIP derivatives show remarkably higher stability than that of TIPS-pentacene, enduring for 2 days to more than 30 days, which depends on the oxidation potential, the contribution of the singlet biradical form in the ground state and the annelation mode. The annelation mode affects not only the band gap and the biradical character (y0) but also the value of the singlet–triplet energy gap (ΔES–T) that does not follow the reverse trend of y0. A method based on comparison between experimental and theoretical bond lengths has been disclosed to estimate y0 and shows that y0 computed at the projected unrestricted Hartree–Fock (PUHF) level is the most relevant among those reported by all other methods. Thanks to their high stability, thin-film OFETs were successfully fabricated. Well balanced ambipolar transport was obtained in the order of 10−3 cm2 V−1 s−1 in the bottom-gate/top-contact configuration, and unipolar transport in the top-gate/bottom-contact configuration was obtained in the order of 10−1 cm2 V−1 s−1 which is the highest value obtained for biradical compounds with a diindenoacene skeleton.

Biradicaloid HDIP derivatives show that the ΔES–T gap does not follow the reverse trend of the biradical character but depends more on the delocalization of the radical centres at the outer rings.  相似文献   
5.
Lolitrems are tremorgenic indole diterpenes that exhibit a unique 5/6 bicyclic system of the indole moiety. Although genetic analysis has indicated that the prenyltransferase LtmE and the cytochrome P450 LtmJ are involved in the construction of this unique structure, the detailed mechanism remains to be elucidated. Herein, we report the reconstitution of the biosynthetic pathway for lolitrems employing a recently established genome-editing technique for the expression host Aspergillus oryzae. Heterologous expression and bioconversion of the various intermediates revealed that LtmJ catalyzes multistep oxidation to furnish the lolitrem core. We also isolated the key reaction intermediate with an epoxyalcohol moiety. This observation allowed us to establish the mechanism of radical-induced cyclization, which was firmly supported by density functional theory calculations and a model experiment with a synthetic analogue.  相似文献   
6.
Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo-ring formation reactions proceed non-enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo-ring formation and 8π-6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non-enzymatic conversion to shimalactones in the dark.  相似文献   
7.
Nickel(0)‐promoted carboxylation of aryl ynol ether proceeded in a highly regioselective manner to produce α‐substituted‐β‐aryloxyacrylic acid derivatives. The α‐substituted‐β‐aryloxyacrylic acids were transformed into the corresponding β‐aryloxypropionic acid derivative as an optically active form via rhodium‐catalyzed asymmetric hydrogenation.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号