首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   29篇
化学   392篇
晶体学   6篇
力学   8篇
数学   21篇
物理学   118篇
  2023年   5篇
  2022年   2篇
  2021年   5篇
  2020年   11篇
  2019年   16篇
  2018年   8篇
  2017年   3篇
  2016年   23篇
  2015年   12篇
  2014年   23篇
  2013年   43篇
  2012年   32篇
  2011年   30篇
  2010年   20篇
  2009年   27篇
  2008年   28篇
  2007年   24篇
  2006年   33篇
  2005年   22篇
  2004年   29篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   7篇
  1998年   4篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   9篇
  1993年   4篇
  1992年   10篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1966年   3篇
排序方式: 共有545条查询结果,搜索用时 15 毫秒
1.
We report the synthesis of high-entropy-alloy (HEA) nanoparticles (NPs) consisting of five platinum group metals (Ru, Rh, Pd, Ir and Pt) through a facile one-pot polyol process. We investigated the electronic structure of HEA NPs using hard X-ray photoelectron spectroscopy, which is the first direct observation of the electronic structure of HEA NPs. Significantly, the HEA NPs possessed a broad valence band spectrum without any obvious peaks. This implies that the HEA NPs have random atomic configurations leading to a variety of local electronic structures. We examined the hydrogen evolution reaction (HER) and observed a remarkably high HER activity on HEA NPs. At an overpotential of 25 mV, the turnover frequencies of HEA NPs were 9.5 and 7.8 times higher than those of a commercial Pt catalyst in 0.05 M H2SO4 and 1.0 M KOH electrolytes, respectively. Moreover, the HEA NPs showed almost no loss during a cycling test and were much more stable than the commercial Pt catalyst. Our findings on HEA NPs may provide a new paradigm for the design of catalysts.

RuRhPdIrPt high-entropy-alloy nanoparticles with a broad and featureless valence band spectrum show high hydrogen evolution reaction activity.  相似文献   
2.
The total synthesis of 7,10‐epimer of the proposed structure of amphidinolide N was accomplished. The requisite chiral C17–C29 subunit was assembled stereoselectively via Keck allylation, Shi epoxidation, diastereoselective 1,3‐reduction, and a later oxidative synthesis of the THF framework. The C1–C13 and C17–C29 subunits were successfully coupled using a Enders RAMP “linchpin” as the C14–C16 three carbon unit, thereby controlling the chirality at C14 and C16. The labile allyl epoxy moiety was successfully constructed by Grieco–Nishizawa olefination at a final stage of the synthesis.  相似文献   
3.
4.
We report herein a nonbiomimetic strategy for the total synthesis of the plicamine-type alkaloids zephycarinatines C and D. The key feature of the synthesis is a stereoselective reductive radical ipso-cyclization using visible-light-mediated photoredox catalysis. This cyclization enabled the construction of a 6,6-spirocyclic core structure through the addition of a carbon-centered radical onto the aromatic ring. Biological evaluation of zephycarinatines and their derivatives revealed that the synthetic derivative with a keto group displays moderate inhibitory activity against LPS-induced NO production. This approach could offer future opportunities to expand the chemical diversity of plicamine-type alkaloids as well as providing useful intermediates for their syntheses.  相似文献   
5.
6.
Asymmetric amplification during self‐replication is a key feature that is used to explain the origin of homochirality. Asymmetric autocatalysis of pyrimidyl alkanol in the asymmetric addition of diisopropylzinc to pyrimidine‐5‐carbaldehyde is a unique example of this phenomenon. Crystallization of zinc alkoxides of this 5‐pyrimidyl alkanol and single‐crystal X‐ray diffraction analysis of the alkoxide crystals reveal the existence of tetramer or higher oligomer structures in this asymmetric autocatalytic system.  相似文献   
7.
8.
Photoreactivation is an error‐free mechanism of DNA repair, utilized by prokaryotes and most eukaryotes and is catalyzed by specific enzymes called DNA photolyases. Photoreactivation has been reported in Vibrio parahaemolyticus WP28; however, information on photolyases in V. parahaemolyticus (V.p) strains has not been reported. This study examined the photoreactivation in V.p RIMD2210633. The photolyase responsible for repairing cyclobutane pyrimidine dimer (CPD) in DNA was identified, and the corresponding gene was determined as VPA1471. The protein was overexpressed in Escherichia coli and was purified for functional assessment in vitro. The mRNA level and protein expression level of this gene increased after ultraviolet A (UVA) illumination following ultraviolet C (UVC) irradiation. In vitro experiments confirmed that the protein encoded by VPA1471 could reduce the quantity of CPD in DNA. We designated the corresponding gene and protein of VPA1471 phr and Phr, respectively, although the function of two other photolyase/cryptochrome family members, VPA0203 and VPA0204, remains unclear. UV (ultraviolet) irradiation experiments suggest that these two genes possess some photorepairing ability. Therefore, we hypothesize that VPA0203 and VPA0204 encode (6‐4) photolyase in V. parahaemolyticus RIMD2210633.  相似文献   
9.
The regulation of multicolor fluorescence changes in mechanochromic fluorescence (MCF) remains a challenging task. Herein, we report the regulation of MCF using a donor-acceptor structure. Two crystal polymorphs, BTD-pCHO(O) and BTD-pCHO(R) produced by the introduction of formyl groups to an MCF dye, respond to a mechanical stimulus, allowing a three-color fluorescence change. Specifically, the orange-colored fluorescence of the metastable BTD-pCHO(O) polymorph changed to a deep-red color in the amorphous-like state to finally give a red color in the stable BTD-pCHO(R) polymorph. This change occurred by mechanical grinding followed by vapor fuming. The two different crystal packing patterns were selectively regulated by the electronic effect of the introduced functional groups. The two types of selectively formed crystals in BTD(F)-pCHO bearing fluorine atoms, and BTD(OMe)-pCHO bearing methoxy groups, respond to mechanical grinding, allowing for the regulation of multicolor MCL from a three-color change to two different types of two-color changes.  相似文献   
10.
Ru is an important catalyst in many types of reactions. Specifically, Ru is well known as the best monometallic catalyst for oxidation of carbon monoxide (CO) and has been practically used in residential fuel cell systems. However, Ru is a minor metal, and the supply risk often causes violent fluctuations in the price of Ru. Performance‐improved and cost‐reduced solid‐solution alloy nanoparticles of the Cu‐Ru system for CO oxidation are now presented. Over the whole composition range, all of the CuxRu1?x nanoparticles exhibit significantly enhanced CO oxidation activities, even at 70 at % of inexpensive Cu, compared to Ru nanoparticles. Only 5 at % replacement of Ru with Cu provided much better CO oxidation activity, and the maximum activity was achieved by 20 at % replacement of Ru by Cu. The origin of the high catalytic performance was found as CO site change by Cu substitution, which was investigated using in situ Fourier transform infrared spectra and theoretical calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号