首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   15篇
  国内免费   1篇
化学   533篇
晶体学   18篇
力学   12篇
数学   32篇
物理学   119篇
  2023年   4篇
  2021年   8篇
  2020年   8篇
  2019年   19篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   6篇
  2014年   17篇
  2013年   27篇
  2012年   29篇
  2011年   30篇
  2010年   18篇
  2009年   22篇
  2008年   44篇
  2007年   35篇
  2006年   40篇
  2005年   45篇
  2004年   44篇
  2003年   32篇
  2002年   29篇
  2001年   13篇
  2000年   17篇
  1999年   7篇
  1998年   5篇
  1997年   12篇
  1996年   10篇
  1995年   5篇
  1994年   10篇
  1993年   9篇
  1992年   10篇
  1991年   10篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1987年   8篇
  1986年   6篇
  1985年   13篇
  1984年   12篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   8篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1974年   4篇
  1970年   2篇
  1941年   2篇
  1936年   2篇
排序方式: 共有714条查询结果,搜索用时 484 毫秒
1.
We report the synthesis of high-entropy-alloy (HEA) nanoparticles (NPs) consisting of five platinum group metals (Ru, Rh, Pd, Ir and Pt) through a facile one-pot polyol process. We investigated the electronic structure of HEA NPs using hard X-ray photoelectron spectroscopy, which is the first direct observation of the electronic structure of HEA NPs. Significantly, the HEA NPs possessed a broad valence band spectrum without any obvious peaks. This implies that the HEA NPs have random atomic configurations leading to a variety of local electronic structures. We examined the hydrogen evolution reaction (HER) and observed a remarkably high HER activity on HEA NPs. At an overpotential of 25 mV, the turnover frequencies of HEA NPs were 9.5 and 7.8 times higher than those of a commercial Pt catalyst in 0.05 M H2SO4 and 1.0 M KOH electrolytes, respectively. Moreover, the HEA NPs showed almost no loss during a cycling test and were much more stable than the commercial Pt catalyst. Our findings on HEA NPs may provide a new paradigm for the design of catalysts.

RuRhPdIrPt high-entropy-alloy nanoparticles with a broad and featureless valence band spectrum show high hydrogen evolution reaction activity.  相似文献   
2.
3.
Simultaneous manipulation of both spin and charge is a crucial issue in magnetic conductors. We report on a strong correlation between magnetism and conductivity in the iodine‐bonded molecular conductor (DIETSe)2FeBr2Cl2 [DIETSe=diiodo(ethylenedithio)tetraselenafulvalene], which is the first molecular conductor showing a large hysteresis in both magnetic moment and magnetoresistance associated with a spin‐flop transition. Utilizing a mixed‐anion approach and iodine bonding interactions, we tailored a molecular conductor with random exchange interactions exhibiting unforeseen physical properties.  相似文献   
4.
Novel electron donor–acceptor–donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C2 insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet–triplet annihilation. Furthermore, electrochemical analysis suggested sigma-dimer formation and electrochemical polymerization on the electrode. Quantum chemical calculations also rationalized the experimental results.  相似文献   
5.
We report on hexagonal close-packed (hcp) palladium (Pd)–boron (B) nanocrystals (NCs) by heavy B doping into face-centered cubic (fcc) Pd NCs. Scanning transmission electron microscopy–electron energy loss spectroscopy and synchrotron powder X-ray diffraction measurements demonstrated that the B atoms are homogeneously distributed inside the hcp Pd lattice. The large paramagnetic susceptibility of Pd is significantly suppressed in Pd–B NCs in good agreement with the reduction of density of states at Fermi energy suggested by X-ray absorption near-edge structure and theoretical calculations.  相似文献   
6.
The mechanism of turbulent heat transfer in the thermal boundary layer developing in the channel flow of a drag-reducing surfactant solution was studied experimentally. A two-component laser Doppler velocimetry and a fine-wire thermocouple probe were used to measure the velocity and temperature fluctuations simultaneously. Two layers of thermal field were found: a high heat resistance layer with a high temperature gradient, and a layer with a small or even zero temperature gradient. The peak value of was larger for the flow with the drag-reducing additives than for the Newtonian flow, and the peak location was away from the wall. The profile of was depressed in a similar manner to the depression of the profile of in the flow of the surfactant solution, i.e., decorrelation between v and compared with decorrelation between u and v. The depression of the Reynolds shear stress resulted in drag reduction; similarly, it was conjectured that the heat transfer reduction is due to the decrease in the turbulent heat flux in the wall-normal direction for a flow with drag-reducing surfactant additives.List of symbols ensemble averaged value - (·)+ normalized by the inner wall variables - (·) root-mean-square value - C concentration of cetyltrimethyl ammonium chloride (CTAC) solution - c p heat capacity - D hydraulic diameter - f friction factor - H channel height - h heat transfer coefficient - j H Colburn factor - l length - Nu Nusselt number, h - Pr Prandtl number, c p/ - q w wall heated flux - Re Reynolds number, U b/ - T temperature - T b bulk temperature - T i inlet temperature - T w wall temperature - T friction temperature, q w /c p u - U local time-mean streamwise velocity - U 1 velocity signals from BSA1 - U 2 velocity signals from BSA2 - U b bulk velocity - u streamwise velocity fluctuation - u1 velocity in abscissa direction in transformed coordinates - u friction velocity, - v wall-normal velocity fluctuation - v1 velocity in ordinate direction in transformed coordinates - var(·) variance - x streamwise direction - y wall-normal direction - z spanwise direction - j junction diameter of fine-wire TC - w wire diameter of fine-wire TC - angle of principal axis of joint probability function p(u,v) - f heat conduction of fluid - w heat conduction of wire of fine-wire TC - kinematic viscosity - local time-mean temperature difference, T w T - temperature fluctuation - standard deviation - density - w wall shear stress  相似文献   
7.
Bis-phosphanated compounds are regarded as the most ubiquitous privileged ligand structures in transition-metal catalysis. The development of highly atom economical reactions is of great importance for their syntheses because less atom economical methods often require complicated purification procedures under inert atmospheres to remove excess starting materials and byproducts. Herein, the photoinduced addition reactions of diphosphane monosulfides bearing PV(S)−PIII single bonds to alkenes is disclosed. These reactions require only equimolar amounts of the diphosphane monosulfide relative to the alkene and facilitate highly selective introduction of two different types of phosphorus-containing groups, such as thiophosphoryl and phosphanyl groups, into a variety of alkenes without any catalyst, base, or additive.  相似文献   
8.
Ru is an important catalyst in many types of reactions. Specifically, Ru is well known as the best monometallic catalyst for oxidation of carbon monoxide (CO) and has been practically used in residential fuel cell systems. However, Ru is a minor metal, and the supply risk often causes violent fluctuations in the price of Ru. Performance‐improved and cost‐reduced solid‐solution alloy nanoparticles of the Cu‐Ru system for CO oxidation are now presented. Over the whole composition range, all of the CuxRu1?x nanoparticles exhibit significantly enhanced CO oxidation activities, even at 70 at % of inexpensive Cu, compared to Ru nanoparticles. Only 5 at % replacement of Ru with Cu provided much better CO oxidation activity, and the maximum activity was achieved by 20 at % replacement of Ru by Cu. The origin of the high catalytic performance was found as CO site change by Cu substitution, which was investigated using in situ Fourier transform infrared spectra and theoretical calculations.  相似文献   
9.
The upper fragment of spirolides A and B, which are marine phycotoxins that exhibit strong antagonistic activities on nicotinic acetylcholine receptors, was constructed. The functionalized cyclohexene in spirolides was stereoselectively synthesized from the bicyclic lactone, which could be readily accessed by the Lewis acid template-catalyzed asymmetric Diels–Alder reaction of the pentadienol and methyl acrylate.  相似文献   
10.
The preparation, characterization and ammonia and water adsorption properties of edge-rich carbon nanofibers (CNFs) were studied, including platelet CNFs (PCNFs) and cup-stacked CNFs (CSCNFs). Since PCNFs and CSCNFs have many chemically active exposed edges, functionalization by oxidizing the edges was carried out by ozone stream and by nitric acid. Transmission electron microscopy, N2 adsorption isotherms and temperature-programmed desorption analysis showed that the nitric acid treatment partly destroyed the graphite structure of the PCNFs and created acid functional groups and micropores, whereas the ozone treatment created functional groups without damaging the structure. Ammonia adsorption isotherms clarified that NH3 adsorption on PCNFs and CSCNFs occurred mainly on oxygen-containing groups, whereas the adsorption on activated carbon fibers (ACFs) occurred on both oxygen-containing groups and the carbon surface without the functional groups, and the CSCNFs showed larger amounts of adsorbed ammonia compared to the PCNFs. Especially at a relatively low pressure range (<0.2 atm), the PCNFs/CSCNFs/ACFs showed the same ammonia adsorption mechanism; that is, the one-to-one interaction between oxygen atoms in the functional groups and hydrogen atoms in ammonia molecules. In addition, the adsorption on the ACFs appeared to occur mainly by interaction with the carbon surface at relatively high pressure (0.3–1.0 atm). Our experimental results and previous findings suggest that NH3 adsorption on PCNFs is due mainly to NH…O hydrogen bonding between oxygen-containing groups and ammonia rather than to chemical bonding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号