首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
物理学   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
First-principle calculations reveal that the configuration system of hexagonal boron nitride(h-BN) monolayer with triangular vacancy can induce obvious magnetism, contrary to that of the nonmagnetic pristine boron nitride monolayer.Interestingly, the h-BN with boron atom vacancy(VB-BN) displays metallic behavior with a total magnetic moment being 0.46μ_B per cell, while the h-BN with nitrogen atom vacancy(VN-BN) presents a half-metallic characteristic with a total magnetic moment being 1.0μ_B per cell. Remarkably, piezoelectric stress coefficient e_(11) of the VN-BN is about 1.5 times larger than that of pristine h-BN. Furthermore, piezoelectric strain coefficient d_(11)(12.42 pm/V) of the VN-BN is 20 times larger than that of pristine h-BN and also one order of magnitude larger than the value for the h-MoS_2 monolayer, which is mainly due to the spin-down electronic state in the V_N-BN system. Our study demonstrates that the nitrogen atom vacancies can be an efficient route to tailoring the magnetic and piezoelectric properties of h-BN monolayer, which have promising performances for potential applications in nano-electromechanical systems(NEMS) and nanoscale electronics devices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号