首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
物理学   3篇
  2023年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
To investigate the process of strain relaxation and resultant variation of microstructure and magnetic properties,low-doped La_(0.825)Sr_(0.175)MnO_3 epitaxial films with different thicknesses are deposited on LaAlO_3 substrates and strain induced nanopillars are discovered inside the La_(0.825) Sr_(0.175)MnO_3 film. Perpendicular oriented nanopillars mainly exist below 30 nm and tend to disappear above 30 nm. The distribution of nanopillars not only induce the variation of lattice parameters and local structural distortion but also lead to the deviation of easy magnetization axis from the perpendicular direction. Specifically, the out-of-plane lattice parameters of the film decrease quickly with the increase of the thickness but tend to be constant when the thickness is above 30 nm. Meanwhile, the variations of magnetic properties along in-plane and out-of-plane directions would also decline at first and they then remain nearly unchanged. Our work constructs the relationship between nanopillars and magnetic properties inside films. We are able to clearly reveal the effects of inhomogeneous strain relaxation.  相似文献   
2.
随着无线通讯技术的进步和发展,集成化、芯片化、阵列化的微波器件成为前沿发展方向.了解材料的基本物理性质并进行相关器件的设计仿真有助于促进对原子尺度到宏观器件性质的理解和预测,是推动微波技术发展的关键,也是信息科技发展中的重点.本文从微波器件的基本材料出发,重点介绍了铁磁、铁电以及多铁复合材料3类铁性材料的基本物理性质及其在微波器件中的应用,进而介绍了微波器件中的仿真模拟软件.  相似文献   
3.
Mn-based Heusler alloys have attracted significant research attention as half-metallic materials because of their giant magnetocr.ystalline anisotropy and magnetocaloric properties.We investigate the crystal structure and magnetic properties of polycrystalline,[101]-oriented,and[100]-oriented Mn_(2-δ) Sn prepared separately by arc melting,the Bridgeman method,and the flux method.All of these compounds crystallize in a Ni_2 In-type structure.In the Mn_(2-δ)Sn lattice,Mn atoms occupy all of the 2 a and a fraction of the 2 d sites.Site disorder exists between Mn and Sn atoms in the 2 c sites.In addition,these compounds undergo a re-entrant spin-glass-like transition at low temperatures,which is caused by frustration and randomness within the spin system.The magnetic properties of these systems depend on the crystal directions,which means that the magnetic interactions differ significantly along different directions.Furthermore,these materials exhibit a giant magnetocaloric effect near the Curie temperature.The largest value of maximum of magnetic entropy change(-△S_M)occurs perpendicular to the[100]direction.Specifically,at 252 K,maximum-△S_M is 2.91 and 3.64 J-kg~(-1)K~(-1) for a magnetic field of 5 and7 T,respectively.The working temperature span over 80 K and the relative cooling power reaches 302 J/kg for a magnetic field of 7 T,which makes the Mn_(2-δ)Sn compound a promising candidate for a magnetic refrigerator.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号