首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2014年   3篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
We synthesize Au@SiO2composite particles with a core-shell structure, and utilize the Au@SiO2nanoparticles to modulate the fluorescence emission of the graphene quantum dot(GQD) through varying the silica shell thickness. The silica shell thickness can be easily controlled by varying the coating time. After silica coating, we investigate the influence of the silica thickness on the fluorescence emission of the GQD and find that the fluorescence property of the GQD can be changed as expected by varying the thickness of the silica shell. We propose an optimized coating time for the silica shell under the interaction of fluorescence quenching and enhancement.  相似文献   
2.
The chemiluminescence (CL) performance of luminol is improved using reduced graphene oxide/gold nanoparticle (rGO-AuNP) nano-composites as catalyst. To prepare this catalyst, we propose a linker free, one-step method to in- situ synthesize rGO-AuNP nano-composites. Various measurements are utilized to characterize the resulting rGO-AuNP samples, and it is revealed that rGO could improve the stability and conductivity. Furthermore, we investigate the CL signals of luminal catalyzed by rGO-AuNP. Afterwards, the size effect of particle and the assisted enhancement effect of rGO are studied and discussed in detail. Based on the discussion, an optimal, sensitive and stable rGO-AuNP-luminon- H202 CL system is proposed. Finally, we utilize the system as a sensor to detect hydrogen peroxide and organic compounds containing amino, hydroxyl, or thiol groups. The CL system might provide a more attractive platform for various analytical devices with CL detection in the field of biosensors, bioassays, and immunosensors.  相似文献   
3.
We report a facile method of synthesizing graphene quantum dots(GQDs) with tunable emission. The as-prepared GQDs each with a uniform lateral dimension of ca. 6 nm have fine solubility and high stability. The photoluminescence mechanism is further investigated based on the surfacestructure and the photoluminescence behaviors. Based on our discussion, the green fluorescence emission can be attributed to the oxygen functional groups, which could possess broad emission bands within the π –π * gap. This work is helpful to explain the vague fluorescent mechanism of GQDs, and the reported synthetic method is useful to prepare GQDs with controllable fluorescent colors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号