首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   6篇
物理学   6篇
  2012年   4篇
  2011年   2篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Density functional theory (DFT) calculations are conducted to explore the interaction of H2 with pure and Ti-doped WO3 (002) surfaces. Four top adsorption models of H2 on pure and Ti-doped WO3 (002) surfaces are investigated respectively, they are adsorption on bridging oxygen O1c, absorption on plane oxygen O2c, absorption on 5-fold W5c (Ti), and absorption on 6-fold W6c. The most stable and H2 possible adsorption structure in the pure surface is H-end oriented to the surface plane oxygen O2c site, while the favourable adsorption sites for H2 in a Ti-doped surface is not only an O2c site but also a W6c site. The adsorption energy, the Fermi energy level EF, and the electronic population are investigated and the H2-sensing mechanism of a pure-doped WO3 (002) surface is revealed theoretically: the theoretical results are in good accordance with our existing experimental results. By comparing the above three terms, it is found that Ti doping can obviously enhance the adsorption of H2. It can be predicted that the method of Ti-doped into a WO3 thin film is an effective way to improve WO3 sensor sensitivity to H2 gas.  相似文献   
2.
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.  相似文献   
3.
4.
胡明  张洁  王巍丹  秦玉香 《中国物理 B》2011,20(8):82101-082101
WO 3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO 3 bulk are investigated.The surface energies of different WO 3 surfaces are compared and then the (002) surface with minimum energy is computed for its NH 3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O 1c,the NH 3 sensing mechanism is obtained.  相似文献   
5.
陈慧卿  胡明  曾晶  王巍丹 《中国物理 B》2012,21(5):58201-058201
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.  相似文献   
6.
胡明  王巍丹  曾晶  秦玉香 《中国物理 B》2011,20(10):102101-102101
Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for W5c. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen O1c site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号