首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   7篇
物理学   8篇
  2014年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 109 毫秒
1
1.
 采用傅里叶模方法,分析了单点金刚石铣削后KDP晶体表面小尺度波纹的周期和幅值对单层增透膜折射率、厚度以及透射率的影响。研究表明:膜层最佳折射率在1.22左右,在此折射率条件下,保证透射率大于99%的单层增透膜的理想厚度范围应为180~220 nm,并且折射率和膜厚值的选取基本不受晶体表面小尺度波纹周期和幅值的影响。若只考虑SPDT法加工后KDP晶体表面小尺度波纹周期和幅值的实际范围,透射率基本不受波纹周期的影响,但却会随波纹幅值的增大而加速下降。理想镀膜条件下透射率最大值大于99%,并且通常在99.67%~99.94%之间。  相似文献   
2.
在自适应光学系统中,波前探测器的噪声是主要误差源。针对我们建立的2.16m望远镜红外自适应光学系统,从伺服控制系统的角度分析了光子计数噪声及其在系统闭环过程中的传递,从理论上推导了系统的噪声功率谱、伺服传递函数以及开环和闭环噪声公式。另外,还给出了在系统中实测的开环和闭环噪声  相似文献   
3.
李明全  陈明君  安晨辉  周炼  程健  肖勇  姜伟 《中国物理 B》2012,21(5):50301-050301
The low laser induced damage threshold of the KH2PO4 crystal seriously restricts the output power of inertial confinement fusion. The micro-waviness on the KH2PO4 surface processed by single point diamond turning has a significant influence on the damage threshold. In this paper, the influence of micro-waviness on the damage threshold of the KH2PO4 crystal and the chief sources introducing the micro-waviness are analysed based on the combination of the Fourier modal theory and the power spectrum density method. Research results indicate that among the sub-wavinesses with different characteristic spatial frequencies there exists the most dangerous frequency which greatly reduces the damage threshold, although it may not occupy the largest proportion in the original surface. The experimental damage threshold is basically consistent with the theoretical calculation. For the processing parameters used, the leading frequency of micro-waviness which causes the damage threshold to decrease is between 350-1 μ-1 and 30-1 μ-1, especially between 90-1 μ-1 and 200-1 μ-1. Based on the classification study of the time frequencies of micro-waviness, we find that the axial vibration of the spindle is the chief source introducing the micro-waviness, nearly all the leading frequencies are related to the practical spindle frequency (about 6.68 Hz, 400 r/min) and a special middle frequency (between 1.029 Hz and 1.143 Hz).  相似文献   
4.
陈明君  姜伟  李明全  陈宽能 《中国物理 B》2010,19(6):64203-064203
The KH 2 PO 4 crystal is a key component in optical systems of inertial confinement fusion (ICF).The microwaviness on a KH 2 PO 4 crystal surface is strongly related to its damage threshold which is a key parameter for application.To study the laser induced damage mechanism caused by microwaviness,in this paper the near-field modulation properties of microwaviness to the incident wave are discussed by the Fourier modal method.Research results indicate that the microwaviness on the machined surface will distort the incident wave and thus lead to non-uniform distribution of the light intensity inside the crystal;in a common range of microwaviness amplitude,the light intensity modulation degree increases about 0.03 whenever the microwaviness amplitude increases 10 nm;1 order diffraction efficiencies are the key factors responsible for light intensity modulation inside the crystal;the light intensity modulation is just around the microwaviness in the form of an evanescent wave,not inside the crystal when the microwaviness period is below 0.712 μm;light intensity modulation degree has two extreme points in microwaviness periods of 1.064 μm and 1.6 μm,remains unchanged between periods of 3 μm and 150 μm,and descends above the period of 150 μm to 920 μm.  相似文献   
5.
KH2PO4 (KDP) crystal with excellent optical properties is a very important element of inertial confinement fusion (ICF) device. However, KDP crystal surface micro-defects severely reduce the crystal laser damage threshold, affecting the crystal service life. In this paper, Gaussian repaired pit is used to replace the crystal surface micro-defects, in order to improve the laser damage resistance of the KDP crystal with surface micro-defects. At first, the physical model of Gaussian repaired pit is built by Fourier model method, and the accuracy of the method is analyzed. It is found that the calculation error can be reduced by increasing the product of the width-period ratio and the truncation constant of the repaired pit. The calculation results about the physical model of Gaussian repaired pit show that the light intensity distribution within the crystal is symmetrical, and there are evidently enhanced light intensity regions in the crystal. Meanwhile, the maximum relative intensity inside the KDP crystal decreases gradually with the increase of the width of the Gaussian repaired pit. Secondly, the Gaussian repaired pits with different widths and the same depth of 20 μm are processed by micro-milling. Their surfaces are very smooth and present the ductile cutting state under the microscope. Finally, the laser damage threshold of the Gaussian repaired pits on the surface of the KDP crystal sample is measured by a 3 ω, 6-ns laser. The results showthat the maximum threshold of the Gaussian repaired pits is 3.12 J/cm2, which is 60% higher than the threshold of initial damage point, and the laser damage threshold increases with the increase of the width of the Gaussian repaired pit.  相似文献   
6.
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 p-m. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.  相似文献   
7.
The low laser induced damage threshold of the KH2PO4 crystal seriously restricts the output power of inertial confinement fusion.The micro-waviness on the KH2PO4 surface processed by single point diamond turning has a significant influence on the damage threshold.In this paper,the influence of micro-waviness on the damage threshold of the KH2PO4 crystal and the chief sources introducing the micro-waviness are analysed based on the combination of the Fourier modal theory and the power spectrum density method.Research results indicate that among the sub-wavinesses with different characteristic spatial frequencies there exists the most dangerous frequency which greatly reduces the damage threshold,although it may not occupy the largest proportion in the original surface.The experimental damage threshold is basically consistent with the theoretical calculation.For the processing parameters used,the leading frequency of micro-waviness which causes the damage threshold to decrease is between 350-1 μm-1 and 30-1 μm-1,especially between 90-1 μm-1 and 200-1 μm-1.Based on the classification study of the time frequencies of microwaviness,we find that the axial vibration of the spindle is the chief source introducing the micro-waviness,nearly all the leading frequencies are related to the practical spindle frequency(about 6.68 Hz,400 r/min) and a special middle frequency(between 1.029 Hz and 1.143 Hz).  相似文献   
8.
KH2PO4 crystal is a crucial optical component of inertial confinement fusion.Modulation of an incident laser by surface micro-defects will induce the growth of surface damage,which largely restricts the enhancement of the laser induced damage threshold.The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method.The results indicate that after the modulation of surface defects,the light intensity distribution inside the crystal is badly distorted,with the light intensity enhanced symmetrically.The relations between modulation properties and defect geometries(e.g.,width,morphology,and depth of defects) are quite different for different defects.The modulation action is most obvious when the width of surface defects reaches 1.064 μm.For defects with smooth morphology,such as spherical pits,the degree of modulation is the smallest and the light intensity distribution seems relatively uniform.The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value.The critical depth is 1.064 μm for cuboid pits and radial cracks,while for ellipsoidal pits the value depends on both the width and the length of the defects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号