首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2012年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The lattice,the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by firstprinciples calculations.The results show that the lattice constants change linearly with stress.Band gaps are broadened linearly as the uniaxial compressive stress increases.The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction,and the reason for band gap of n-type ZnO changing with stress is also explained.The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy.However,when the energy is higher than 4.0 eV,the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears.There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV.The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO,which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.  相似文献   
2.
杨平  李培  张立强  王晓亮  王欢  宋喜福  谢方伟 《中国物理 B》2012,21(1):16803-016803
The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first-principles calculations. The results show that the lattice constants change linearly with stress. Band gaps are broadened linearly as the uniaxial compressive stress increases. The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction, and the reason for band gap of n-type ZnO changing with stress is also explained. The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy. However, when the energy is higher than 4.0 eV, the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears. There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV. The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO, which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号