首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full potential linearized augmented plane wave (FPLAPW) method calculations are carried out for semiconducting orthorhombic BaSi2. The optical properties and the origin of the different optical transitions are investigated. Our calculated band gap of 1.0918eV is indirect, which is in good agreement with the experimental result. The bonds between Ba and Si are considered to be electrovalent bond. The anlsotropy in the imaginary part ε2(w) and real part εl(w) of the optical dielectric tensor are analysed. The contributions of various transition peaks are explained from the imagnary part of the dielectric function.  相似文献   

2.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

3.
蔡鲁刚  刘发民  钟文武 《中国物理 B》2010,19(9):97101-097101
This paper calculates the structural parameters, electronic and optical properties of orthorhombic distorted perovskite-type TbMnO3 by first principles using density functional theory within the generalised gradient approximation. The calculated equilibrium lattice constants are in a reasonable agreement with theoretical and experimental data. The energy band structure, density of states and partial density of states of elements are obtained. Band structures show that TbMnO3 is an indirect band gap between the O 2p states and Mn 3d states, and the band gap is of 0.48 eV agreeing with experimental result. Furthermore, the optical properties, including the dielectric function, absorption coefficient, optical reflectivity, refractive index and energy loss spectrum are calculated and analysed, showing that the TbMnO3 is a promising dielectric material.  相似文献   

4.
徐彭寿  谢长坤  潘海斌  徐法强 《中国物理》2004,13(12):2126-2129
We have studied the band structure and optical properties of 4H-SiC by using a full potential linearized augmented plane waves (FPLAPW) method. The density of states (DOS) and band structure are presented. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With band gap correction, the real part of the dielectric function has been derived from the imaginary part by the Kramers-Kronig (KK) dispersion relationship. The values of reflectivity for normal incidence as a function of photon energy have also been calculated. We found the theoretical results are in good agreement with the experimental data.  相似文献   

5.
赵龙  芦鹏飞  俞重远  刘玉敏  王东林  叶寒 《中国物理 B》2010,19(5):56104-056104
We perform a first-principles simulation to study the electronic and optical properties of wurtzite Zn1 xCuxO.The simulations are based upon the Perdew-Burke-Ernzerhof form of generalised gradient approximation within the density functional theory.Calculations are carried out in different concentrations.With increasing Cu concentration,the band gap of Zn1 xCuxO decreases due to the shift of valence band.The imaginary part of the dielectric function indicates that the optical transition between O 2p states in the highest valence band and Zn 4s states in the lowest conduction band shifts to the low energy range as the Cu concentration increases.Besides,it is shown that the insertion of Cu atom leads to redshift of the optical absorption edge.Meanwhile,the optical constants of pure ZnO and Zn0.75Cu0.25O,such as loss function,refractive index and reflectivity,are discussed.  相似文献   

6.
The energy band properties, density of states, and band alignment of the BexZn1-xO1-ySy alloy (Be- and S-doped wurtzite ZnO) are investigated by the first-principles method. BexZn1-xO1-ySy alloy is a direct band gap semiconductor, the valence band maximum (VBM) and the conduction band minimum (CBM) of BexZn1-xO1-ySy are dominated by S 3p and Zn 4s states, respectively. The band gap and lattice constant of BexZn1-xO1-ySy alloy can be modulated by changing the doped content values x and y. With the increase in Be content value x in the BexZnl-xOl-ySy alloy, the band gap increases and the lattice constant reduces, but the situation is just the opposite when increasing the S content value y in the BexZn1-xO1-ySy alloy. Because the lattice constant of Be0.375Zn0.625O0.75S0.25 alloy is well matched with that of ZnO and its energy gap is large compared with that of ZnO, so the Be0.375Zn0.625O0.75S0.25 alloy is suitable for serving as the blocking material for a high-quality ZnO-based device.  相似文献   

7.
A.John Peter  Chang Woo Lee 《中国物理 B》2012,21(8):87302-087302
Cd1-x ZnxS nanocrystals are prepared by a co-precipitation method with different atomic fractions of Zn.The texture,structural transformation and optical properties with increasing x value in Cd1-x ZnxS are studied with scanning electron microscopy,electron diffraction patterning,and absorption spectra respectively.Quantum confinement in a strained CdS/Cd1-xZnxS related nanodot with various Zn content values is investigated theoretically.Binding energies on exciton bound CdS/CdxZn1-xS quantum dot are computed,with consideration of the internal electric field induced by the spontaneous and piezoelectric polarizations,and thereby the interband emission energy is calculated as a function of the dot radius.The optical band gap from the UV absorption spectrum is compared with the interband emission energy computed theoretically.Our results show that the average diameter of composite nanoparticles ranges from 3 nm to 6 nm.The X-ray diffraction pattern shows that all the peaks shift towards the higher diffracting angles with an increase in Zn content.The lattice constant gradually decreases as the Zn content increases.The strong absorption edge shifts towards the lower wavelength region and hence the band gap of the films increases as the Zn content increases.The values of the absorption edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV for the CdS film and 3.5 eV for the ZnS film.Our numerical results are in good agreement with the experimental results.  相似文献   

8.
彭丽萍  方亮  吴卫东  王雪敏  李丽 《中国物理 B》2012,21(4):47305-047305
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temper- ature. The as-deposited films are annealed at different temperatures from 400 C to 800 C in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400 C to 800 C. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400 C. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400 C to 800 C.  相似文献   

9.
The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnOl_xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B 1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1_xSex are evaluated in the range 0 〈 x 〈 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.  相似文献   

10.
We calculate the electronic structure and optical properties of F-doped anatase TiO2. The results indicate that the band gap ofF-doped TiO2 increases slightly compared with the pure TiO2. However, it is interesting that the visible absorption of F-doped TiO2 located between 600 and 700 nm is observed, and it enhances gradually with the increasing F concentration. Furthermore, according to the results of densities of states and imaginary part of dielectric function ε2(ω), we propose that the transition between Ti 3d and Ti 3d states may be responsible for the visible absorption, but not the band gap narrowing.  相似文献   

11.
Electronic and optical properties of single-walled zinc oxide (ZnO) nanotubes are investigated from the firstprinciples calculations. Electronic structure calculations show that ZnO nanotubes are all direct band gap semiconducting nanotubes and the band gaps are relatively insensitive to the diameter and chirality of tubes. The origin of the common electronic band gaps of ZnO nanotubes is explained in terms of band-folding from the two-dimensional band structure of graphite-like sheet. Moreover, the optical properties such as dielectric function and energy loss function spectra of different ZnO nanotubes are very similar, relatively independent of diameter and chirality of tubes. The calculated dielectric function and loss function spectra show a moderate optical anisotropy with respect to light polarization.  相似文献   

12.
The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnO 1-x Se x alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO 1-x Se x are evaluated in the range 0 ≤ x ≤ 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.  相似文献   

13.
A planes waves pseudo-potential calculations are performed for the SrMO_4(M=Mo and W) compound in order to investigate the structural, electronic, elastic and optical properties. The calculated lattice constants are in good agreement with experiment ones. The electronic structures show that SrMO_4 has a direct band gap situated at Γpoint. The calculated elastic constants indicate that both structures are mechanically stable. The bulk modulus, shear modulus, Young's modulus and Poisson ratio are investigated from the elastic constants, in the same time the anisotropy of the elastic properties is discussed. The imaginary part of the dielectric functions is calculated and the contributions of various transitions peaks are analyzed. Furthermore, the other optical properties such as absorption coefficient I(ω),optical reflectivity R(ω), energy-loss spectrum L(ω), and the refractive index n(ω) have been investigated.  相似文献   

14.
The zincblende ternary alloys Tl_xGa_(1-x) As(0 x 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.  相似文献   

15.
傅广生  王新占  路万兵  戴万雷  李兴阔  于威 《中国物理 B》2012,21(10):107802-107802
Amorphous silicon carbide films are deposited by the plasma enhanced chemical vapour deposition technique,and optical emissions from the near-infrared to the visible are obtained.The optical band gap of the films increases from 1.91 eV to 2.92 eV by increasing the carbon content,and the photoluminescence(PL) peak shifts from 1.51 eV to 2.16 eV.The band tail state PL mechanism is confirmed by analysing the optical band gap,PL intensity,the Stocks shift of the PL,and the Urbach energy of the film.The PL decay times of the samples are in the nanosecond scale,and the dependence of the PL lifetime on the emission energy also supports that the optical emission is related to the radiative recombination in the band tail state.  相似文献   

16.
The relative band gap for a rhombus lattice photonic crystal is studied by plane wave expansion method and high frequency structure simulator(HFSS)simulation.General wave vectors in the first Briliouin zone are derived.The relative band gap as a function of air-filling factor and background material is investigated,respectively,and the nature of photonic band gap for different lattice angles is analyzed by the distribution of electric energy.These results would provide theoretical instruction for designing optical integrated devices using photonic crystal with a rhombus lattice.  相似文献   

17.
The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.  相似文献   

18.
杨中芹  徐至中 《中国物理》1997,6(8):606-613
Band structures of wurtzite GaN (α-GaN) under strains in the region -5%—5% are calculated in a tight-binding framework. The empirical scaling rule has been used for considering the effects of hydroatatic strains. The scaling indexes are determined by fitting the deformation-potential constants with other theoretical values. The band gap at Γ point increases with the absolute value of strains. GaN turns to be of indirect band gap when strains reach 5 %. The density of states and the imaginary part of dialectic function (ε2(ω)) are studied. Both the shape and energy position of the highest peak in the ε2(ω) spectrum successively change with the strains. The real part of dielectric/unction, refractive index and the effects of the strains on them are also shown.  相似文献   

19.
The optical reflectance and transmittance spectra in the wavelength range of 300–2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25–3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12–3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14–3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.  相似文献   

20.
Advanced GGA + U(Hubbard) and modified Becke–Johnson(mBJ) techniques are used for the calculation of the structural, electronic, and optical parameters of α-Al2-x CoxO3(x = 0.0, 0.167) compounds. The direct band gaps calculated by GGA and m BJ for pure alumina are 6.3 eV and 8.5 eV, respectively. The m BJ approximation provides results very close to the experimental one(8.7 eV). The substitution of Al with Co reduces the band gap of alumina. The wide and direct band gap of the doped alumina predicts that it can efficiently be used in optoelectronic devices. The optical properties of the compounds like dielectric functions and energy loss function are also calculated. The rhombohedral structure of theα-Al2-x CoxO3(x = 0.0, 0.167) compounds reveal the birefringence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号