首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
物理学   3篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
基于空芯反谐振光纤设计搭建了光纤增强拉曼光谱检测平台,实现了95%的激光耦合效率;提出CCD和小孔协同降噪方法,使信噪比提高约6倍;相比于未使用光纤时,信噪比提高约270倍。基于单一标准浓度气体分析,确定了用于气体定性的特征拉曼谱峰及标定模型并建立了过程气体定量分析模型,实现了CH4裂解制备C2H2过程气体现场样本的同时检测分析,主要成分包含H2、CO、CO2、CH4、C2H2、C2H6和C2H4。各气体同时最小检出限分别达到6.3、26.6、1.2、2.2、4.2、3.9、9.1μL/L·bar,各气体含量分别为560 588.51μL/L、230 678.21μL/L、33 107.65μL/L、56 086.77μL/L、77 945.56μL/L、1 307.19μL/L、1 823.55μL/L,各气体浓度与色谱仪标...  相似文献   
2.
不论是在科学研究,食品安全,医学检测,还是在安全事故预防等领域,对多组分混合气体进行快速、准确的定性定量分析已经成为一种迫切的需求 。拉曼光谱法是一种强大的气体传感方法,既能克服传统的非光谱法检测时间长、重复性差等弱点,又能弥补吸收光谱法无法直接测量同核双原子分子的缺点,同时还能使用单一频率的激光器对多组分混合气体进行定性和定量分析。但由于物质固有的弱拉曼效应,加之气体的拉曼效应一般远低于固体和液体,这极大地限制了拉曼光谱法在气体传感领域的应用。如何提高气体的散射强度是使气体拉曼传感技术得到更广泛应用的关键。目前最主要的气体拉曼传感增强技术包括腔增强技术和光纤增强技术。腔增强技术从提高与待测气体作用的激发光强度和作用路径来从源头上增强拉曼散射信号,包括多次反射腔增强、F-P腔增强、激光内腔增强。光纤增强则从提高球面散射光的收集效率来增强拉曼散射信号,使绝大部分拉曼散射光都能进入光谱探测器,包括镀银毛细管增强和空芯光纤增强。简要介绍了上述两种技术的的增强原理,汇总了研究进展以及应用现状,并讨论了它们各自的优势以及局限性,最后着眼于多组分痕量气体的检测,展望了气体拉曼传感技术未来的发展趋势。尽管目前基于吸收效应的光谱分析方法在气体检测领域占据主导地位,尤其是光声光谱法,但在不久的将来,气体拉曼传感技术有望在气体检测领域得到越来越广泛、越深入的应用。  相似文献   
3.
非相干宽带腔增强吸收光谱(IBBCEAS)技术凭借其高选择性、高灵敏度、高时空分辨率等优势而逐渐成为NO_3自由基的主要测量方法之一。然而其使用的光谱仪分辨率有限,不足以分辨水汽的精细吸收结构,导致水汽的吸收非线性,进而影响NO_3自由基浓度的准确反演。介绍了一种基于插值法获取水汽有效吸收截面的方法,并将其用于消除IBBCEAS装置中水汽吸收对NO_3自由基浓度反演的干扰。利用不同浓度的水汽吸收谱结合插值法获得了水汽的有效吸收截面,使用该有效吸收截面来反演不同浓度的水汽,反演结果与商用湿度计测量结果的线性相关系数为0.99789。在此基础上测量并拟合了不同水汽浓度下NO_3自由基和NO_2气体的吸收,在拟合残差上未发现水汽残余结构,水汽反演结果与商用湿度计测量值的线性相关系数为0.999。在30 s的积分时间内,NO_3自由基和NO_2的探测极限分别为5.8×10~(-12)和3.6×10~(-9)。将本装置应用于夜间大气中进行NO_3自由基和NO_2浓度的测量,测得NO_3自由基体积分数为18.4×10~(-12)~22.9×10~(-12),平均体积分数为20.2×10~(-12),NO_2体积分数为0.6×10~(-9)~16.0×10~(-9),平均体积分数为9.9×10~(-9)。实验结果表明:利用插值法获得的水汽的有效吸收截面能够有效消除水汽吸收对NO_3自由基浓度反演的干扰,提高NO_3自由基和NO_2气体浓度测量的准确度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号