首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
原位实时地高精度测量固液界面的元素或离子(电荷)组成和动态变化对于界面反应和相互作用研究非常重要,但是传统的高分辨离子束分析实验在真空环境中不能直接测量液体样品。本文研制了一种固体-液体界面探针,该探针使用氮化硅-铝纳米复合膜作为真空密封窗和电化学电极,利用复旦大学核微探针成功开展了真空中固体-液体界面探针0.01 mol/L氯化钡和1 mol/L氯化镧溶液样品固体-液体界面的卢瑟福背散射(RBS)分析和粒子激发X射线(PIXE)分析。实验结果表明,真空环境下,固液界面探针纳米薄窗可承受2 MeV He+离子注量为1.0×1018 ions/cm2的辐照。微区PIXE分析成功获得了固液界面探针结构的元素分布。通过对卢瑟福背散射能谱进行分析,获取了20 nm分辨的电极界面微米深溶液中的La, Cl元素浓度。在1 mol/L的LaCl3固液界面电极表面,负电压(–2.3 V)时电解质离子在电极表面高浓度聚集,正电压(+2.3 V)时电解质在电极表面呈低浓度分布,在约1 250 nm深处电解质溶液趋向于体浓度。  相似文献   
2.
真核生物的DNA分子经高度压缩以染色质形式存在于细胞核中,染色质动态结构在DNA复制、基因转录和DNA修复等过程中起着重要的调控作用。核内染色质结构的原位高分辨解析和其结构变化定量表征一直受困于显微成像观测分辨率的限制。通过点击化学荧光标记EdU和STORM单分子定位显微成像,实验得到了细胞核内超分辨率染色质结构图像。基于提出的单分子团簇分析和最近邻距离算法分析发现,X射线辐照和TSA处理后的细胞核内核小体团簇数量显著增多,核小体团簇所占细胞核内的面积比相对于对照组增加,且团簇内平均EdU分子数降低。同时,重离子辐照活细胞在线成像实验获得的XRCC1招募动力学速率常数表明乙酰化处理使得DNA损伤密度降低。这些结果表明电离辐射和乙酰化处理均导致了染色质结构的松散化。STORM超分辨成像方法和分析算法及其获得的核小体团簇分布规律为染色质结构的松散提供了直接的定量表征数据支持。  相似文献   
3.
综述了3D细胞培养技术(TDCC)的发展, 3种主要的体外组织构建方法; 辐射诱导2D细胞产生旁效应的现象与机理; 人工构建的3D组织辐射后诱导的旁效应及其细胞间信号传导机理。 重离子(C离子)辐照作为一种重要的放疗工具, 对其辐射处理3D组织后诱导产生的旁效应进行了展望。 由于3D组织更接近人体细胞生长的真实环境, 因而以3D组织作为模型研究辐射诱导的旁效应, 对于辐射旁效应的防护和治疗可能具有重要的指导意义。 Compared with the cultured monolayer (2D) cells, three dimensional (3D) tissue could be more similar to the environment in vivo including the physical support, chemical factors, cell cell and cell matrix interaction and so on. With the development of three dimensional cell culture techniques (TDCC), 3D tissue is widely used in the areas of bystander effect research. This review focuses on introducing the TDCC method and its application in bystander effect research. First, the development process of 3D tissue culture method was introduced. Secondly, the induction of radiation induced bystander effects both in 2D cell and 3D tissue and its mechanisms were reviewed. Finally, because heavy ion (carbon ion beam) has been developed as a useful tool to cure solid cancer ,and the 3D tissue model is an ideal material to study the damages on body after being irradiated and to understand the underlying mechanisms, future study about heavy ion radiation inducing bystander effect in 3D tissue was discussed.  相似文献   
4.
微束装置可以为生命科学研究提供微米定位、剂量特定的电离辐射,在生物体内的电离辐射靶物质及其敏感度、靶物质的损伤及修复机制研究中具有独特的作用。概述了生物微束装置和实验技术的发展及其在低剂量辐射效应、旁观者效应、信号传导研究中的主要应用;介绍了中国科学院近代物理研究所(IMP)重离子微束装置,该装置可以提供能量7~ 80 MeV/u、传能线密度为30~ 3000 keV/μm的重离子微束,实现了活细胞辐照和在线观察、小鼠定位辐照的实验技术;利用IMP微束装置在重离子诱导旁效应实验、小鼠下丘脑重离子辐照效应和DNA损伤快速修复动态等方面取得了一些实验成果。The microbeam facility can provide micrometer scale localized and predefined ionizing radiation in the life science study, and the microbeam techniques play a unique role in determining the target substances of ionizing radiation, as well as in the study of radiation sensitivity, mechanisms of radiation damage response and repair. This paper summarizes the technical developments of biological microbeam facilities and their applications in the studies of low-dose radiation effect, bystander effect and cellular signaling. This paper also introduces the recent developments at the heavy-ion microbeam facility in the Institute of Modern Physics (IMP), which can provide heavy ion microbeam irradiation with energy of 7~80 MeV/u and LET of 30~3000 keV/μm. The facility can perform radiobiological irradiation and online investigation in living cells and mice, including bystander effect study, sleeping system influence after irradiation to mice hypothalamus and the recruitment dynamics of XRCC1 protein.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号