首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   18篇
  国内免费   2篇
化学   150篇
晶体学   2篇
力学   5篇
数学   8篇
物理学   26篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   21篇
  2019年   11篇
  2018年   18篇
  2017年   13篇
  2016年   15篇
  2015年   14篇
  2014年   18篇
  2013年   22篇
  2012年   14篇
  2011年   14篇
  2010年   9篇
  2009年   4篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
1.
Research on Chemical Intermediates - Zinc oxide nanoparticles (ZnO-NPs) are known as a material in the treatment of environmental pollutions. In this study, ZnO-NPs were synthesized using...  相似文献   
2.
3.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in medical science. The aim of the experiment was the evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of green synthesized manganese nanoparticles using Ziziphora clinopodioides Lam leaves (MnNPs@ZC). The synthesized MnNPs@ZC were characterized using different techniques including UV–Vis., FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDS). According to the XRD analysis, 48.10 nm was measured for the crystal size of nanoparticles. SEM images exhibited a uniform spherical morphology and size in the range of 47.58 to 70.26 nm for the biosynthesized nanoparticles. MnNPs@ZC revealed excellent non-cytotoxicity effect against human umbilical vein endothelial cells, antioxidant activity against DPPH, antibacterial properties against Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli O157:H7) and Gram-positive bacteria (Streptococcus pneumonia, Staphylococcus aureus, and Bacillus subtilis), and antifungal potentials against Candida glabrata, Candida albicans, Candida guilliermondii, and Candida krusei. Also, use of MnNPs@ZC ointment decreased significantly (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and raised significantly (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups in experimental animals. In conclusion, synthesized MnNPs@ZC indicated antibacterial, antifungal, non-cytotoxicity, antioxidant, and cutaneous wound healing effects in a dose-depended manner. After confirming in the clinical trials, these nanoparticles can be used in human for the treatment of cutaneous and infectious diseases.  相似文献   
5.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   
6.
7.
The catalyst-free multi-component reactions of aldehydes, malononitrile, and sodium azide at a relatively low temperature in magnetized water provided 5-substituted 1H-tetrazoles in high-to-excellent yields. This method offers the advantages of short reaction times, low costs, quantitative reaction yields, simple work-up, green, and no need for any organic solvent.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号