首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   14篇
  国内免费   4篇
化学   99篇
力学   3篇
数学   13篇
物理学   22篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   16篇
  2019年   14篇
  2018年   19篇
  2017年   10篇
  2016年   12篇
  2015年   7篇
  2014年   17篇
  2013年   6篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有137条查询结果,搜索用时 19 毫秒
1.
Research on Chemical Intermediates - Zinc oxide nanoparticles (ZnO-NPs) are known as a material in the treatment of environmental pollutions. In this study, ZnO-NPs were synthesized using...  相似文献   
2.
The new Co(II) - carboxamide complex ( 1 ) and Co3O4 nanoparticles ( 2 ), by way of thermal decomposition of ( 1 ) have been efficiently synthesised in the environment-friendly. X-ray diffraction reveals a slightly distorted octahedral coordination of cobalt (four nitrogens and two oxygens) in ( 1 ) and regular octahedral or tetrahedral ones (oxygens only) in ( 2 ). The investigation of ( 1 ) and ( 2 ) in the Mizoroki-Heck and epoxidation of alkens reactions showed them both to be powerful, green and inexpensive catalysts.  相似文献   
3.
We report an ecofriendly synthetic approach for the fabrication of biogenic gold nanoparticles (AuNPs) using electron-rich sea cucumber extract as a bio-reductant and stabilizing agent in reducing gold cations into AuNPs at the optimal conditions. The produced AuNPs are spherical in shape with an average particle size of 11 ± 1.5 nm in transmission electron microscopy (TEM) and exhibited a crystal structure of face-centered cubic in X-ray diffraction (XRD) analyses. Our results indicated that bioinspired AuNPs demonstrate superior catalytic activity in the safe and facile one-pot synthesis of polyhydroquinoline derivatives under solvent-free reaction conditions. This green route encompasses multiple benefits including highly recyclable bioinspired catalyst (5 cycles), short reaction times, convenient workout, high to excellent product yields (82%–97%), and nonhazardous conditions.  相似文献   
4.
A 2D hole‐type hexagonal lattice photonic crystal is utilized, herein, to detect the refractive index change of the material infiltrated into the designed circular sensing area which also resembles a ring resonator. The accuracy of the detection process is enhanced considering the simultaneous shift of the resonance wavelengths and the intensity modulation which occur in two separate spectral regions. The presented structure has the ability to detect liquids, material concentrations in fluids and gases having refractive indices in the range of n = 1–2 with sensitivity and quality factor of 61 nm/RIU and 3000, respectively, for resonance‐wavelength‐shift‐based operation. The detection range of n = 1–1.4 with the sensitivity of S = 0.69 NI/RIU is achieved for the intensity‐based measurement and the results show good linearity in the operating range.  相似文献   
5.
A simple solvent-free protocol for the preparation of flunixin, a potent non-narcotic, non-steroidal anti-inflammatory drugs is reported using boric acid as catalyst. Its salt, flunixin meglumine are then prepared under reflux in EtOH. This sustainable method are then extended for the synthesis of a series of 2-(arylamino) nicotinic acid derivatives. The present protocol combines non-hazardous neat conditions with associated benefits like excellent yield, straightforward workup, and use of readily available and safe catalyst in the absence of any solvent, which are important factors in the pharmaceutical industry. The pathway for catalytic activation of 2-chloronicotic acid with boric acid was also investigated using Gaussian 03 program package.
  相似文献   
6.
This research represents a novel detection method of acetone level in the exhaled breath samples (RH=88 %) based on polypyrrole/tungsten oxide (PPy/WO3) nanocomposite sensor. The PPy/WO3 sensor was fabricated by the deposition of nanocomposite on/between interdigitated electrodes (IDEs) through electrospray coating and was then characterized by FE-SEM imaging. In this detection method, the coulometric signal of the sensor was calculated using Fast Fourier Continuous Cyclic Voltammetry (FFTCCV), where cyclic voltammetry (CV) was applied to the sensor in the defined potential rang and then charge changes of the sensor was obtained by integration of the current in all scanned potential ranges. FFTCCV method enhances the sensitivity of the sensor when exposed to the gas mixtures containing acetone. In addition to its fast coulometric response time (≤5 s) in the two linear ranges of 0.7–2.8 ppm and 2.8–28.2 ppm (R2=0.99), FFTCCV method provides the low detection limit of 70 ppb, and high sensitivity toward acetone at the optimum values of the parameters. The fabricated sensor showed great selectivity toward acetone when exposed to humid air and some exhaled gas like carbon dioxide, ammonia, methanol, ethanol and alkyl amines. The results were very satisfying as the sensor was capable to detect different acetone levels in human exhaled breath as non-invasive diagnosis of diabetes with a good correlation (R2≃0.9) to the routine blood sugar test taken by different commercial glucometers results.  相似文献   
7.
Research on Chemical Intermediates - In this research, synthesis and characterization of a novel Schiff base Cu (II) complex immobilized on Fe3O4@SiO2 nanoparticles are reported. Then, the...  相似文献   
8.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号