首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1517篇
  免费   89篇
  国内免费   34篇
化学   1192篇
晶体学   22篇
力学   66篇
数学   129篇
物理学   231篇
  2024年   1篇
  2023年   11篇
  2022年   25篇
  2021年   56篇
  2020年   78篇
  2019年   69篇
  2018年   79篇
  2017年   71篇
  2016年   115篇
  2015年   76篇
  2014年   99篇
  2013年   181篇
  2012年   125篇
  2011年   116篇
  2010年   94篇
  2009年   65篇
  2008年   73篇
  2007年   66篇
  2006年   39篇
  2005年   37篇
  2004年   23篇
  2003年   26篇
  2002年   19篇
  2001年   9篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1969年   1篇
排序方式: 共有1640条查询结果,搜索用时 112 毫秒
1.
2.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
3.
A simple and fast method named microfunnel‐filter‐based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low‐toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro‐funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean‐up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15–1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306–342), and the method provides low limits of detection and quantification (in the ranges of 4–8 and 15–25 ng/mL, respectively).  相似文献   
4.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   
5.
6.
7.
8.
9.
Grazing‐incidence X‐ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate crosslinking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of X‐ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam line instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10–60 s at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing‐incidence X‐ray “patterning” offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1074–1086  相似文献   
10.
Karimian  Saeed  Jahanbin  Zahra 《Meccanica》2020,55(6):1263-1294

In the present research, a new comprehensive model of a flexible articulated flapping wing robot using the bond graph approach is presented. The flapping kinematics of a two-section wing is introduced via the bond graph based approach on a hybrid mechanism providing amplitude and phase characteristics. The aerodynamic quasi-steady approach equipped with stall correlation is utilized according to the reduced flapping frequency and the angle of attack ranges. The local flow velocity and the wing position are calculated in both wing and body coordinates taking into account rotation and translation of the wing different parts. Estimation of the effective angle of attack is performed by calculating the instantaneous torque distribution on both wing sections. Aeroelastic modeling is employed in which the wing structure is assumed as an elastic Euler–Bernoulli beam at the leading edge with three linear torsional modes. In this novel integrated bond graph model, computation of the performance indices including the average lift and thrust, consumed and produced powers by flapping and mechanical efficiency are presented. Due to existence of the numerous geometric and kinematic parameters in articulated flexible flapping wing, such a model is essential for design and optimization. Consequently, an example of a typical parametric study and the results validation are carried out. It is indicated that the sensitivity of the bird performance to relative change in design variables would increase for out of phase flapping, second part stiffness, flapping amplitude, frequency and velocity respectively. It is interesting that by employing the reverse-phase flapping which is possible only via articulated wings, the maximum efficiency could be achieved. In addition, it is shown that adjusting the wing torsional stiffness is a crucial item in design of passive flapping robots. The key advantage of the two-section flapping wing is depicted as the controlling capability of the angle of attack in the outer part of the wing. Finally, the improved version of the bird is being addressed by approximately 15% progress in propulsive efficiency.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号