首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   7篇
化学   66篇
数学   3篇
物理学   14篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有83条查询结果,搜索用时 234 毫秒
1.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   
2.
Plasma Chemistry and Plasma Processing - A novel direct current (DC) plasma torch, operating with a gas mixture consisting of carbon dioxide and hydrocarbon (methane), has been adapted and used for...  相似文献   
3.
4.
In this study, anti-reflection (AR) \(\hbox {SiO}_{2}/ \hbox {ZrO}_{2}\) thin films with 3-layers were designed and fabricated by the essential Macleod software and physical vapor deposition, respectively. In order to improve the optical and physical properties of the prepared samples, laser shock peening (LSP) technique was applied. For this purpose, an Argon Fluoride Excimer laser \((\lambda =193 \,\text {nm})\) with 110 and 240 mJ energies and 1 Hz frequency at different pulses was used. The effect of LSP method in improving transmissions and laser damage thresholds of the prepared samples was proved by using UV–Vis–IR spectroscopy in the wavelength range of 400–1200 nm and international standard ISO11254 at 1064 nm. In addition, scanning electron microscopy was used to check the effect of applying LSP.  相似文献   
5.
Conducting polymer electrodes based on poly(3,4-ethylenedioxythiophene doped with poly(styrenesulfonate) (PEDOT:PSS) are evaluated as transducers to record extracellular signals in cell populations. The performance of the polymer electrode is compared with a gold electrode. A small-signal impedance analysis shows that in the presence of an electrolyte, the polymer electrode establishes for frequencies below 100 Hz a higher capacitive electrical double layer at the electrode/electrolyte interface. Furthermore, the polymer/electrolyte interfacial resistance is several orders of magnitude lower than the resistance of the gold/electrolyte interface. The polymer low interfacial resistance minimizes the intrinsic thermal noise and increases the system sensitivity. The ultra-sensitivity of the polymer-based transducer system was demonstrated by recording the electrical activity of cancer cells of the nervous system.  相似文献   
6.
A novel inorganic–organic nanohybrid material SBA-15@triazine/H5PW10V2O40 (SBA-15@ADMPT/H5PW10V2O40) was prepared and used as an efficient, eco-friendly, and highly recyclable catalyst for the one-pot multicomponent synthesis of multisubstituted pyridines from the reaction of aldehydes, cyclic ketones, malononitrile, and ammonium acetate with good to excellent yields (77–97%). The nanohybrid catalyst was prepared by the chemical anchoring of Keggin heteropolyacid H5PW10V2O40 onto the surface of SBA-15 mesoporous silica modified with 2-APTS -4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine (ADMPT) linker. Standard characterization data such as FT-IR, XRD, SEM, TEM, BET, EDX, and DTA-TGA spectroscopy confirmed that the heteropolyacid H5PW10V2O40 is well dispersed on the surface of the solid support and its structure is preserved after immobilization on the SBA-15 mesoporous silica modified with ADMPT. Furthermore, the nanocatalyst can be recovered easily and reused five times without considerable loss of catalytic activity. In general, these advantages highlight this protocol as an attractive and useful methodology, among the other methods reported in the literature, for the eco-friendly and rapid synthesis of biologically active multisubstituted pyridines.  相似文献   
7.
The application of the recently introduced dispersive liquid–liquid microextraction (DLLME) for the separation and determination of an inorganic selenite [Se(IV)] derivative by means of a gas chromatography–electron-capture detection system has been studied. The selenium derivative was extracted with the DLLME technique using a mixture of ethanol (disperser solvent) and chlorobenzene (extraction solvent). The influences of the various analytical parameters on the derivatization reaction and microextraction procedure have been evaluated and optimized. Under the optimum conditions, an enrichment factor of 122 was obtained for only 5.00 mL of the water sample. The calibration graph was linear in the range of 0.015–10 μg L?1 with a detection limit of 0.005 μg L?1. The relative standard deviation for ten replicate measurements of 2 μg L?1 of selenium was 4.1%. The method was applied to the determination of selenium in environmental surface water samples with satisfactory recovery.  相似文献   
8.
In the present study, ZnO nanoparticle preparation in a water‐base medium without using toxic chemicals was investigated. Zinc (II) acetate dehydrate, L? leucine and 5? sulfosalicylaldehyde sodium salt were utilized as the starting materials. X? ray diffraction analyses proved that ZnO was achieved as a unique phase. The highest value of crystallinity was obtained at 600 °C and the minimum values of crystallite size and lattice strain were reported at 400 and 500 °C, respectively. The photoluminescence spectroscopy showed that firing at 500 °C leads to decrease the point defects in ZnO structure. SEM and TEM images confirmed the relation between the firing temperature, the degree of crystallinity and the crystallite size. Firing at 400 °C leads to form ZnO nanoparticles with a size distribution ranging from 15 to 50 nm with cubic, circle and hexagonal shapes. By increasing the temperature to 500 °C, the nanoparticles dimensions increase to 30–60 nm. The particle size of sample ‘c’ is more than 50 nm. The optimum temperature to achieve the goal of this research, namely a high crystallinity and low structure defects, was found to be 500 °C.  相似文献   
9.
In the work ZnO nanoparticles were prepared by sol-gel method. The catalyst was characterized by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM). The photocatalytic oxidation of anionic surfactant in detergent industries was studied using ZnO nanoparticles with diameter size 20 nm as catalyst on irradiation with UV light. Analysis of kinetic showed that the amount of surfactant photocatalytic degradation can be fitted with pseudo-first-order model and studied photochemical elimination of Linear alkyl benzene sulfonates by the trial-and-error and Taguchi methods. Our experimental design consisted of testing five factors, i.e. dosage of K2S2O8, concentration of surfactant, amount of ZnO, irradiation time, and initial pH. The results showed that photocatalytic degradation of linear alkyl benzene sulfonates was strongly influenced by these parameters.  相似文献   
10.
The purpose of this study was to test whether an empirical mathematical model (EMM) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can distinguish between benign and malignant breast lesions. A modified clinical protocol was used to improve the sampling of contrast medium uptake and washout. T(1)-weighted DCE magnetic resonance images were acquired at 1.5 T for 22 patients before and after injection of Gd-DTPA. Contrast medium concentration as a function of time was calculated over a small region of interest containing the most rapidly enhancing pixels. Then the curves were fitted with the EMM, which accurately described contrast agent uptake and washout. Results demonstrate that benign lesions had uptake (P<2.0 x 10(-5)) and washout (P<.01) rates of contrast agent significantly slower than those of malignant lesions. In addition, secondary diagnostic parameters, such as time to peak of enhancement, enhancement slope at the peak and curvature at the peak of enhancement, were derived mathematically from the EMM and expressed in terms of primary parameters. These diagnostic parameters also effectively differentiated benign from malignant lesions (P<.03). Conventional analysis of contrast medium dynamics, using a subjective classification of contrast medium kinetics in lesions as "washout," "plateau" or "persistent" (sensitivity=83%, specificity=50% and diagnostic accuracy=72%), was less effective than the EMM (sensitivity=100%, specificity=83% and diagnostic accuracy=94%) for the separation of benign and malignant lesions. In summary, the present research suggests that the EMM is a promising alternative method for evaluating DCE-MRI data with improved diagnostic accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号