首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of the dyes Acid Red 114 and Reactive Black 5 in aqueous solutions on polyhydroxyl dendrimer magnetic nanoparticles (Fe3O4@SiO2‐TRIS) was studied in a batch system. The Fe3O4@SiO2‐TRIS NPs were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and transmission electron microscopy. Experiments were performed under different conditions such as the initial dye concentration, adsorbent dose, and pH. The pseudo‐second‐order model provided a very good fit for the two anionic dyes. The Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherms at different temperatures, and the former agreed very well with the experimental data. However, the adsorption capacity of Fe3O4@SiO2‐TRIS NPs was reduced during surface modification, which could be due to the dye occupying the binding sites of the dendrimer. Thermodynamic parameters, namely the change in free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0), were also determined.  相似文献   

2.
In this research, a novel magnetic mesoporous adsorbent with mixed phase of Fe2O3/Mn3O4 nanocomposite was prepared by a facile precipitating method and characterized extensively. The prepared nanocomposite was used as adsorbent for toxic methyl orange (MO) dye removal from aqua matrix considering its high surface area (178.27 m2/g) with high saturation magnetization (23.07 emu/g). Maximum dye adsorption occurs at solution pH 2.0 and the electrostatic attraction between anionic form of MO dye molecules and the positively charged nanocomposite surface is the main driving force behind this adsorption. Response surface methodology (RSM) was used for optimizing the process variables and maximum MO removal of 97.67% is obtained at optimum experimental condition with contact time, adsorbent dose and initial MO dye concentration of 45 min, 0.87 g/l and 116 mg/l, respectively. Artificial neural network (ANN) model with optimum topology of 3–5–1 was developed for predicting the MO removal (%), which has shown higher predictive ability than RSM model. Maximum adsorption capacity of this nanocomposite was found to be 322.58 mg/g from Langmuir isotherm model. Kinetic studies reveal the applicability of second‐order kinetic model with contribution of intra‐particle diffusion in this process.  相似文献   

3.
《中国化学会会志》2018,65(8):940-950
Magnetic carboxyl‐coated silica iron oxide nanoparticles (Fe3O4@SiO2‐COOH NPs) were successfully synthesized, characterized, and then applied as a nano‐adsorbent for removal of malachite green (MG) from aqueous solutions. According to the experimental results, about 97.5% of MG could be removed from aqueous solutions using an adsorbent amount of 0.5 g/L at pH = 9 in 120 min. The kinetics and equilibrium adsorptions is well‐described by the pseudo‐second‐order kinetics and Langmuir model with the maximum absorption capacity of 263.16 mg/g, respectively. Thermodynamic studies showed that the adsorption of the hazardous MG dye was spontaneous and endothermic with a random process.  相似文献   

4.
The aim of this study is to develop a new method for the preparation of Fe3O4@SiO2–An NPs from copperas. The core–shell structures of the nanoparticles and chemical composition have been confirmed by TEM, XRD and FTIR techniques. Fluorescence Enhancement of Fe3O4@SiO2–An NPs with zinc ions was investigated by fluorescence emission spectra. The results indicated that the Fe3O4 NPs with a high purity (Total Fe 72.16 %) were obtained from copperas by chemical co-precipitation method and have a uniform spherical morphology with an average diameter of about 10 nm. The Fe3O4 NPs coated with silica nanoparticles were prepared, and an attempt had been made that the Fe3O4@SiO2 NPs were modified by 3-aminopropyltriethoxysilane and 9-anthranone successively. The recommended mole ratio of ethanol to water and the content of ammonia water added were 4:1 and 25 wt% respectively, which have an obviously effect on the combination of the final well-ordered MNPs with the amino functionalities and reactant components. The functionalized Fe3O4@SiO2–An NPs have a fluorescence property and this fluorescence effect can be enhanced with the Zn2+ ions attachment. Meanwhile, the saturated magnetization of Fe3O4@SiO2–An NPs was 37.8 emug?1 at 25 °C and this fluorescent material exhibited excellent magnetic properties. A new way was therefore provided for the comprehensive utilization of the unmarketable copperas. Moreover, the functionalized Fe3O4@SiO2–An NPs have a big potential in environmental decontamination, medical technology and biological science.  相似文献   

5.
6.
A biosensor based on hemoglobin‐Fe3O4@SiO2 nanoparticle bioconjunctions modified indium‐tin‐oxide (Hb/Fe3O4@SiO2/ITO) electrode was fabricated to determine the concentration of H2O2. UV‐vis absorption spectra, fourier transform infrared (FT‐IR) spectroscopy, cyclic voltammetry (CV) and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the bioconjunction of Fe3O4@SiO2 with Hb. Experimental results demonstrate that the immobilized Hb on the Fe3O4@SiO2 matrix retained its native structure well. In addition, Fe3O4@SiO2 nanoparticles (NPs) are very effective in facilitating electron transfer of the immobilized enzyme, which can be attributed to the unique nanostructure and larger surface area of the Fe3O4@SiO2 NPs. The biosensor displayed good performance for the detection of H2O2 with a wide linear range from 2.03×10?6 to 4.05×10?3 mol/L and a detection limit of 0.32 µmol/L. The resulting biosensor exhibited fast amperometric response, good stability, reproducibility, and selectivity to H2O2.  相似文献   

7.
Over bimetallic Au/Cu catalyst supported on magnetic Fe3O4 nanoparticles, water-mediated bromamine acid could be selectively converted into 4,4'-diamino-1,1'-dianthraquinonyl-3,3'-disulfonic acid (DAS) with a yield of 88.67%. The magnetic catalyst could be readily separated and reused.  相似文献   

8.
A new mesoporous organic–inorganic nanocomposite was formulated and then used as stabilizer and support for the preparation of palladium nanoparticles (Pd NPs). The properties and structure of Pd NPs immobilized on prepared 1,4‐diazabicyclo[2.2.2]octane (DABCO) chemically tagged on mesoporous γ‐Fe2O3@hydroxyapatite (ionic modified (IM)‐MHA) were investigated using various techniques. The synergistic effects of the combined properties of MHA, DABCO and Pd NPs, and catalytic activity of γ‐Fe2O3@hydroxyapatite‐DABCO‐Pd (IM‐MHA‐Pd) were investigated for the Heck cross‐coupling reaction in aqueous media. The appropriate surface area and pore size of mesoporous IM‐MHA nanocomposite can provide a favourable hard template for immobilization of Pd NPs. The loading level of Pd in the nanocatalyst was 0.51 mmol g?1. DABCO bonded to the MHA surface acts as a Pd NP stabilizer and can also lead to colloidal stability of the nanocomposite in aqueous solution. The results reveal that IM‐MHA‐Pd is highly efficient for coupling reactions of a wide range of aryl halides with olefins under green conditions. The superparamagnetic nature of the nanocomposite means that the catalyst to be easily separated from solution through magnetic decantation, and the catalytic activity of the recycled IM‐MHA‐Pd showed almost no appreciable loss even after six consecutive runs.  相似文献   

9.
Novel heterogeneous catalysts were prepared using immobilization of bis(2‐decylsulfanylethyl)amine–CrCl3 (Cr‐SNS‐D) on various supports, namely commercial TiO2, Al2O3 and magnetic Fe3O4@SiO2 nanoparticles, to yield solid catalysts denoted as support@Cr‐SNS‐D. The structure of the catalysts was confirmed on the basis of spectroscopic analyses, N2 adsorption–desorption and inductively coupled plasma (ICP) analysis. The surface areas of Al2O3@Cr‐SNS‐D, Fe3O4@SiO2@Cr‐SNS‐D and TiO2@Cr‐SNS‐D catalysts were determined to be 70, 23 and 41 m2 g?1, respectively. A decrease in surface area from that of the supports clearly establishes accurate immobilization of Cr‐SNS‐D catalyst on the surface of the parent carriers. The loading of Cr was determined to be 0.02, 0.16 and 0.11 mmol g?1 for Cr‐SNS‐D supported on TiO2, Al2O3 and Fe3O4@SiO2, respectively, using ICP analysis. After preparation and full characterization of the catalysts, ethylene trimerization reaction was accomplished in 40 ml of dry toluene, at 80°C and 25 bar ethylene pressure and in the presence of methylaluminoxane (Al/Cr = 700) within 30 min. The supported chromium catalysts were found to be efficient and selective for the ethylene trimerization reaction. The highest activity (74 650 g1‐hexene gCr?1 h?1), as well as no polyethylene formation during reaction processes, was observed when TiO2 was used as the catalyst support.  相似文献   

10.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

11.
A type of fluorescent–magnetic dual‐function nanocomposite, Fe3O4@SiO2@P‐2, was successfully obtained by Cu+‐catalyzed click reaction between acetylene (C?C? H)‐substituted carbazole‐based conjugated polymer ( P‐2) and azide‐terminated silica‐coated magnetic iron oxide nanoparticles (Fe3O4@SiO2–N3). Optical and magnetization analyses indicate that Fe3O4@SiO2@P‐2 exhibits stable fluorescence and rapid magnetic response. The fluorescence of Fe3O4@SiO2@P‐2 was quenched significantly in the presence of I? and gave a detection limit (DL) of ~8.85 × 10?7 M. Given the high binding constant and matching ratio between Hg2+ and I?, the fluorescence of Fe3O4@SiO2@P‐2/I? complex recovered efficiently with the addition of Hg2+. A DL of ~4.17 × 10?7 M was obtained by this probing system. Recycling of Fe3O4@SiO2@P‐2 probe was readily achieved by simple magnetic separation. Results indicate that Fe3O4@SiO2@P‐2 can be used as an “on–off–on” fluorescent switchable and recyclable Hg2+ probe. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3636–3645  相似文献   

12.
This research work includes the fabrication of iron oxide nanoparticles (Fe2O3 NPs) by green construction approach using Wisteria sinensis leaves extract. Due to its eco-friendly approach, the synthesis of iron oxide NPs (Fe2O3 NPs) using various plant sources, such as plant parts, and microbial cells have gained a lot of attention in recent years. Cost-effectiveness and ease of availability make Wisteria sinensis leaves extract a potential candidate for the construction of iron oxide NPs. The various key features like biocompatibility, non-toxicity capping, and stabilizing agents present in biological sources are advantageous for usage in a variety of applications. The phytoconstituents present in the leaf extract of Wisteria sinensis serve as reducing and stabilizing agents. The biologically fabricated (Fe2O3 NPs) were analyzed using FT-IR, XRD, UV–vis spectroscopy, and SEM. In the present work, the antioxidant and photocatalytic dye degradation efficiency of Fe2O3 NPs has been studied. The dye degradation efficiency of methylene blue dye was found to be 87% at 180 min upon exposure to sunlight. The capacity of Fe2O3 NPs to scavenge 2,2-diphenyl-1-picrylhydrazyl hydrate free radicals (DPPH) was examined using a UV–Vis spectrophotometer. The study compared the radical scavenging activity (RSA) of Fe2O3 nanoparticles (NPs) with that of the standard antioxidant ascorbic acid. The results demonstrated that Fe2O3 NPs have a greater ability to scavenge radicals than ascorbic acid. The half-maximal inhibitory concentration (IC50) of Fe2O3 NPs was observed to range from 0.12 to 0.17. Furthermore, Fe2O3 NPs displayed the highest antifungal activity, with an inhibition zone of 26.8 mm against F. oxysporum. These findings suggest that the biologically synthesized Fe2O3 NPs possess potent antimicrobial and dye degradation properties.  相似文献   

13.
14.
This study describes the synthesis and characterization of ethylenediaminetetraacetic acid (EDTA) functionalized magnetic nanoparticles of 20 nm in size – Fe3O4@SiO2‐EDTA – which were used as a novel magnetic adsorbent for Cd(II) and Pb(II) binding in aqueous medium. These nanoparticles were obtained in two‐stage synthesis: covering by tetraethyl orthosilicate and functionalization with EDTA derivatives. Nanoparticles were characterized using TEM, FT‐IR, and XPS methods. Metal ions were detected under optimized experimental conditions using Differential Pulse Anodic Stripping Voltammetry (DPASV) and Hanging Mercury Drop Electrode (HDME) techniques. We compared the ability of Fe3O4@SiO2‐EDTA to bind cadmium and lead in concentration of 553.9 μg L?1 and 647.5 μg L?1, respectively. Obtained results show that the adsorption rate of cadmium binding was very high. The equilibrium for Fe3O4@SiO2‐EDTA‐Cd(II) was reached within 19 min while for the Fe3O4@SiO2‐EDTA‐Pb(II) was reached within 25 minutes. About 2 mg of nanoparticles was enough to bind 87.5 % Cd(II) and 54.1 % Pb(II) content. In the next step the binding capacity of Fe3O4@SiO2‐EDTA nanoparticles was determined. Only 1.265 mg of Fe3O4@SiO2‐EDTA was enough to bind 96.14 % cadmium ions while 5.080 mg of nanoparticles bound 40.83 % lead ions. This phenomenon proves that the studied nanoparticles bind Cd(II) much better than Pb(II). The cadmium ions binding capacity of Fe3O4@SiO2‐EDTA nanoparticles decreased during storage in 0.5 M KCl solution. Two days of Fe3O4@SiO2‐EDTA storage in KCl solution caused the 32 % increase in the amount of nanoparticles required to bind 60 % of cadmium while eight‐days storage caused further increase to 328 %. The performed experiment confirmed that the storage of nanoparticles in solution without any surfactants reduced their binding capacity. The best binding capacity was observed for the nanoparticles prepared directly before the electrochemical measurements.  相似文献   

15.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

16.
Novel magnetic titanium dioxide nanoparticles decorated with methyltrimethoxysilane (Fe3O4@TiO2‐MTMOS) were successfully fabricated via a sol–gel method at room temperature. The synthesized material was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis and vibrating sample magnetometry. The removal efficiency of the adsorbent was evaluated through the adsorption of methylene blue (MB) dye from water samples. The adsorption isotherm and kinetics were evaluated using various models. The Langmuir model indicated a high adsorption capacity (11.5 mg g?1) of Fe3O4@TiO2‐MTMOS. The nanocomposite exhibited high removal efficiency (96%) and good regeneration (10 times) compared to Fe3O4 and Fe3O4@TiO2 at pH = 9.0. Based on the adsorption mechanism, electrostatic interaction plays a main role in adsorption since MB dye is cationic in nature at pH = 9, whereas the adsorbent acquired an anionic nature. The newly synthesized Fe3O4@TiO2‐MTMOS can be used as a promising material for efficient removal of MB dye from aqueous media.  相似文献   

17.
ABSTRACT

In this work, a magnetic molecularly imprinted polymer (Fe3O4@SiO2@MIPs) was prepared via a surface-imprinted method for the determination of the triazines in environmental water samples combined with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer showed that the Fe3O4@SiO2@MIPs was successfully synthesised and exhibited superparamagnetism. The isotherm adsorption, selectivity and adsorption kinetics experiments showed that the Fe3O4@SiO2@MIPs exhibited excellent specific recognition and fast adsorption equilibrium for triazines. The adsorption process is spontaneous and endothermic. The isotherm adsorption was consistent with Scatchard model and adsorption kinetic fit pseudo-second-order kinetic model. Under the optimised adsorption conditions, the Fe3O4@SiO2@MIPs was directly used to selectively enrich six triazines in environmental water samples. The enrichment volume was up to 500 mL, and the matrix effects were down to 0.7–12.4%. The built method has excellent linearities in the range of 0.25–500 ng L?1 with R2 in the range of 0.998–0.999, lower limit of detections (0.02–0.08 ng L?1) and higher precision (2.4–7.2%). The Fe3O4@SiO2@MIPs is expected to be widely applied to the direct enrichment of triazines in bulk environmental water samples.  相似文献   

18.
Polyethersulfone (PES) and poly(1‐vinylpyrrolidone) (PVP) were used to prepare ultrafiltration membranes with grafted Fe3O4 magnetic nanoparticles (PVP‐g‐Fe3O4@SiO2). The structure of synthesized PVP‐g‐Fe3O4@SiO2 was confirmed by FT‐IR and SEM analysis. Physical properties of blend membranes such as thermal resistance, Tensile strength, water uptake, and hydrophilicity were also investigated. Blended membranes of PES/PVP‐g‐Fe3O4@SiO2 have exhibited higher thermal resistance due to increasing the modified nanoparticle content. The hydrophilicity of the synthesized PES/PVP‐g‐Fe3O4@SiO2 membranes also improved by increasing the PVP‐g‐Fe3O4@SiO2 content. As expected, increasing the hydrophilicity of blended membrane, caused enhancement of fouling resistance in membranes. Results showed that the content of PVP‐g‐Fe3O4@SiO2 has different effects on the properties of synthesized composite membranes. Despite increasing the content of PVP‐g‐Fe3O4@SiO2 has a negative effect on elongation, positive effects on maximum stress was observed. Moreover, the water uptake of synthesized membranes was significantly enhanced in comparison to other similar studies.  相似文献   

19.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

20.
A copper catalyst has been explored as an efficient and recyclable catalyst to effect Sonogashira and Suzuki cross‐coupling reactions. After modification of 2‐(((piperazin‐1‐ylmethyl)imino)methyl)phenol (PP) on the surface of amorphous silica‐coated iron oxide (Fe3O4@SiO2@Cl) magnetic core–shell nanocomposite, copper(II) chloride was employed to synthesize the Fe3O4@SiO2@PP‐Cu catalyst, affording a copper loading of 1.52 mmol g−1. High yield, low reaction times, non‐toxicity and recyclability of the catalyst are the main merits of this protocol. The catalyst was characterized using Fourier transform infrared, X‐ray photoelectron, energy‐dispersive X‐ray and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, scanning and transmission electron microscopies, and vibrating sample magnetometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号