首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   44篇
  国内免费   81篇
化学   120篇
晶体学   4篇
物理学   51篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   7篇
  2011年   7篇
  2010年   19篇
  2009年   7篇
  2008年   12篇
  2007年   9篇
  2006年   12篇
  2005年   11篇
  2004年   14篇
  2003年   6篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有175条查询结果,搜索用时 17 毫秒
1.
高温高压化学反应对反应堆设备的可靠性、反应堆性能的控制、核电站运行的安全持久性等具有重要影响,但相关实验难以在高校教学中开展。借助PHREEQC程序及最新热力学数据,建立了反应堆一回路硼酸-氢氧化锂添加配比、腐蚀沉淀物产生及二回路pH控制方案的化学反应模型。运用化学模拟来教学,促进了学生对所学知识的理解与掌握,丰富了现代教学方法。相关模型对核电企业的培训也具有一定参考价值。  相似文献   
2.
Zhao  Ying  Mei  Zheng  Zhao  Feng-Qi  Xu  Si-Yu  Ju  Xue-Hai 《Structural chemistry》2021,32(1):387-394
Structural Chemistry - The ReaxFF-lg is used to simulate the thermal decomposition of the pure nitroglycerin (NG) and nitroglycerin/nano-Al (NG/Al) systems. The simulation results show that the...  相似文献   
3.
4.
Thermal behavior of 1,2,3-triazole nitrate   总被引:1,自引:0,他引:1  
The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is C\textp ( \textJ mol - 1 \text K - 1 ) = - 42.6218 + 0.6807T C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.  相似文献   
5.
A novel energetic material, 4,5-dihydroxyl-2-(dinitromethylene)-imidazolidine (DDNI), was synthesized by the reaction of FOX-7 and glyoxal in water at 70 °C. Thermal behavior of DDNI was studied with DSC and TG-DTG methods, and presents only an intense exothermic decomposition process. The apparent activation energy and pre-exponential factor of the decomposition reaction were 286.0 kJ mol−1 and 1031.16 s−1, respectively. The critical temperature of thermal explosion of DDNI is 183.78 °C. Specific heat capacity of DDNI was studied with micro-DSC method and theoretical calculation method, and the molar heat capacity is 217.76 J mol−1 K−1 at 298.15 K. The adiabatic time-to-explosion was also calculated to be a certain value between 14.54 and 16.34 s. DDNI presents lower thermal stability, for its two ortho-hydroxyl groups, and its thermal decomposition process becomes quite intense.  相似文献   
6.
The high-pressure thermal properties and their correlation with burning rates of the composite modified double base (CMDB) propellants containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz), a substitute of hexogen (RDX), were investigated using the high-pressure differential scanning calorimetry (PDSC). The results show that there is a main exothermal decomposition process with the heating of each propellant. High pressure can restrain the volatilization of NG, accelerate the main decomposition reaction, and make the reaction occur easily. High pressure can change the main decomposition reaction mechanism function and kinetics, and the control process obeys the rule of Avrami–Erofeev equation at high pressure and chemical reaction at normal pressure. However, the mechanism function can not be changed by the ballistic modifier. The correlation between PDSC characteristic values and burning rates was carried out and found that u and ( p  \Updelta H\textd / \Updelta T ) 1 / 2 \left( {p \, \Updelta H_{\text{d}} { / }\Updelta T} \right)^{ 1 / 2} keep a good linear relation, k u keeps a similar changing trend with u, and it can be used to study the effect of the ballistic modifier or the other component on the burning rates.  相似文献   
7.
超级铝热剂的制备、表征及其燃烧催化作用   总被引:3,自引:0,他引:3  
用纳米铝粉和纳米氧化铅、纳米氧化铜和纳米三氧化二铋为原料,采用超声分散复合的方法,制备了纳米超级铝热剂Al/PbO、Al/CuO和Al/Bi2O3。采用X射线粉末衍射(XRD)、扫描电镜及能谱分析(SEM-EDS)和红外光谱(IR)对原料和产物的物相、组成、形貌和结构进行分析表征;运用差示扫描量热仪(DSC)评估三种超级铝热剂与双基推进剂主要组分的相容性;研究了3种超级铝热剂对双基推进剂燃烧性能的影响。结果表明,Al/PbO、Al/CuO和Al/Bi2O3与推进剂主要组分硝化棉(NC)、硝化棉/硝化甘油(NC/NG)混合物和吉纳(DINA)的相容性均良好,而与黑索今(RDX)和1,3-二甲基-1,3-二苯基脲(C2)相对较为敏感;含三种纳米超级铝热剂的双基推进剂表现出优异的燃烧性能。  相似文献   
8.
以硝酸铜、无水乙醇、1,2-环氧丙烷和纳米铝粉为原料, 在超声振荡条件下, 采用溶胶-凝胶法制备了纳米复合含能材料——超级铝热剂Al/CuO的前驱体. 利用热重-差示扫描量热-傅里叶变换红外-质谱(TG- DSC-FTIR-MS)联用技术, 研究了纳米Al/CuO溶胶-凝胶前驱体的热行为和分解过程及机理. 利用不同升温速率下的TG-DTG分析, 研究了纳米超级铝热剂Al/CuO的溶胶-凝胶前驱体的热分解反应机理, 采用了6种动力学分析方法进行动力学参数计算, 得到前驱体分解反应的表观活化能、反应级数、频率因子等动力学参数, 纳米Al/CuO前驱体分解反应的动力学方程为: dα/dt=1014.0×4α3/4exp(-2.0×104/T).  相似文献   
9.
2,2,2-三硝基乙基-N-硝基甲胺的热安全性   总被引:1,自引:0,他引:1  
为评价2,2,2-三硝基乙基-N-硝基甲胺(TNMA)的热安全性, 得到计算TNMA热安全性参数用的基本数据, 用经验式估算了TNMA的比热容(Cp)和热导率(λ). 用键能贡献于生成热Qf的加和法, 估算了TNMA的标准生成焓ΔcHmθ(TNMA, s, 298.15 K). 用热力学公式计算了TNMA的标准燃烧焓ΔUmθ(TNMA, s, 298.15 K)和标准燃烧能ΔcHmθ(TNMA, s, 298.15 K). 用Kamlet-Jacobs 公式估算了爆速、爆压和爆热. 用经验式估算了分解热(Qd). 通过差示扫描量热(DSC)曲线和高灵敏度布鲁顿玻璃薄膜压力计测得的逸出气体标准体积(VH)-时间(t)曲线, 得到了TNMA放热分解反应的动力学参数. 用上述基本数据得到了评价TNMA的热安全性参数: 自加速分解温度(TSADT), 热爆炸临界温度(Tbe0和Tbp0), 绝热至爆时间(tTIad), 撞击感度50%落高(H50), 热点起爆临界温度(Tcr), 被300 K环境包围的半厚和半径为1 m的无限大平板、无限长圆柱和球形TNMA的热感度概率密度函数S(T), 相应于S(T)-T关系曲线最大值的峰温(TS(T)max), 安全度(SD), 临界热爆炸环境温度(Tacr)和热爆炸概率(PTE). 结果表明: (1) TNMA有较好的热安全性和对热抵抗能力, 与环三亚甲基三硝胺(RDX)相比, TNMA易从热分解过渡到热爆炸; (2) 不同形状大药量TNMA 热安全性降低的次序为: 球>无限长圆柱>无限大平板; (3)TNMA有高的燃烧能、高的爆轰化学能(爆热)和接近环四亚甲基四硝胺(HMX)的爆炸性能, 其对冲击敏感, 冲击感度与季戊四醇四硝酸酯(PETN)和特屈尔接近, 可用作混合炸药主组分.  相似文献   
10.
酒石酸铅锆的制备、表征及其燃烧催化作用   总被引:1,自引:0,他引:1  
以酒石酸、硝酸氧锆和硝酸铅为原料,合成出了双金属盐酒石酸铅锆,采用有机元素分析、X射线荧光光谱和FTIR对其进行了表征。在程序升温条件下,利用TG/DTG、DSC、固相原位反应池/FTIR联用技术,研究了酒石酸铅锆的热行为和热分解机理,描述了酒石酸铅锆的热分解过程,分析得出其最终分解产物为ZrO2、PbO和C。利用螺压工艺制备了含酒石酸铅锆的推进剂样品,研究了酒石酸铅锆对双基系推进剂燃烧性能的影响,分析了其燃烧催化作用。结果表明,酒石酸铅锆对双基系推进剂的燃烧具有良好的催化作用,是一种高效的燃烧催化剂;酒石酸铅锆热分解的最终产物PbO是催化燃烧的主要活性物质,推进剂燃烧过程中形成了氧化铅-铅循环催化体系,而锆和碳则起辅助催化的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号