首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3731篇
  免费   673篇
  国内免费   582篇
化学   2765篇
晶体学   79篇
力学   208篇
综合类   52篇
数学   504篇
物理学   1378篇
  2024年   3篇
  2023年   76篇
  2022年   105篇
  2021年   115篇
  2020年   180篇
  2019年   157篇
  2018年   163篇
  2017年   146篇
  2016年   197篇
  2015年   215篇
  2014年   242篇
  2013年   303篇
  2012年   361篇
  2011年   348篇
  2010年   269篇
  2009年   225篇
  2008年   270篇
  2007年   259篇
  2006年   199篇
  2005年   171篇
  2004年   142篇
  2003年   113篇
  2002年   135篇
  2001年   109篇
  2000年   89篇
  1999年   83篇
  1998年   51篇
  1997年   29篇
  1996年   34篇
  1995年   19篇
  1994年   26篇
  1993年   27篇
  1992年   23篇
  1991年   17篇
  1990年   17篇
  1989年   11篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
排序方式: 共有4986条查询结果,搜索用时 15 毫秒
1.
杨哲  闫瑾  梁德东  成巍  李卉  李乙 《化学教育》2022,43(14):131-133
研究生课程思政的建设影响着研究生的培养质量,关乎着能否实现立德树人这一人才培养的根本任务。介绍了吉林大学化学学院立足学科特点,在研究生课程思政建设方面取得成功的经验,并对未来的课程思政建设方向进行了探讨。  相似文献   
2.
3.
Fluorescence probes in the NIR-IIa region show drastically improved imaging owing to the reduced photon scattering and autofluorescence in biological tissues. Now, NIR-IIa polymer dots (Pdots) are developed with a dual fluorescence enhancement mechanism. First, the aggregation induced emission of phenothiazine was used to reduce the nonradiative decay pathways of the polymers in condensed states. Second, fluorescence quenching was minimized by different levels of steric hindrance to further boost the fluorescence. The resulting Pdots displayed a fluorescence QY of ca. 1.7 % in aqueous solution, suggesting an enhancement of ca. 21 times in comparison with the original polymer in tetrahydrofuran (THF) solution. Small-animal imaging by using the NIR-IIa Pdots exhibited a remarkable improvement in penetration depth and signal to background ratio, as confirmed by through-skull and through-scalp fluorescent imaging of the cerebral vasculature of live mice.  相似文献   
4.
A simple and efficient nitrile-directed meta-C−H olefination, acetoxylation, and iodination of biaryl compounds is reported. Compared to the previous approach of installing a complex U-shaped template to achieve a molecular U-turn and assemble the large-sized cyclophane transition state for the remote C−H activation, a synthetically useful phenyl nitrile functional group could also direct remote meta-C−H activation. This reaction provides a useful method for the modification of biaryl compounds because the nitrile group can be readily converted to amines, acids, amides, or other heterocycles. Notably, the remote meta-selectivity of biphenylnitriles could not be expected from previous results with a macrocyclophane nitrile template. DFT computational studies show that a ligand-containing Pd–Ag heterodimeric transition state (TS) favors the desired remote meta-selectivity. Control experiments demonstrate the directing effect of the nitrile group and exclude the possibility of non-directed meta-C−H activation. Substituted 2-pyridone ligands were found to be key in assisting the cleavage of the meta-C−H bond in the concerted metalation–deprotonation (CMD) process.  相似文献   
5.
In this study, we investigate the modulation of energy band in 3D self-assembled nanomembranes containing GaAs/Al0.26Ga0.74As quantum wells (QWs). Photoluminescence (PL) characterizations demonstrate that the self-assembled structures have different optical transition properties and the modulation of the energy band is thus realized. Detailed spectral analyses disclose that the small strain change in structures with different curvatures cannot cause remarkable change in energy bands in Al0.26Ga0.74As layer. On the other hand, the optical transitions of GaAs QW layer is influenced by the strain evolution in term of light emission intensity. We also find the first order Stark effect in rolled-up nanomembrane with diameter of 150 μm, which is closely connected with the coupling effect between the deformation potential and the piezoelectric potential. Our work may pave a way for the fabrication of high performance rolled-QW infrared photo-detectors.  相似文献   
6.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
7.
Conductive hydrogels with ionic compounds possess great potential for the development of soft smart devices. A dielectric scarfskin is typically required for these devices to prevent short circuiting, leading to devices with lower stretchability than the hydrogel. Henceforth, commonly used dielectric materials, such as PDMS and Ecoflex, cannot be largely stretched. Hydrogel devices with ultrastretchability are required to accommodate hostile application environments. Herein, we propose a hydrogel fiber coated with a dielectric layer that can be stretched to over 2000% of its initial length. The fiber remains conductive when stretched to ~1300%. In addition, the core/sheath hydrogel fiber can be endowed with a variety of functional properties, such as electroluminescence (EL), photoluminescence (PL), and magnetic‐responsiveness, demonstrating scalability of the resultant fiber. The present work can pave the way for numerous next‐generation soft devices, such as smart textiles and wearable electronics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 272–280  相似文献   
8.
Fifteen organometallic Ir(III) half‐sandwich complexes ( 1A – 5C ) having the general formula [(η5‐Cpx)Ir(N^N)Cl]PF6 (Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph) or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph); N^N = diamine) have been synthesized and characterized. The molecular structure of 1A was determined using single‐crystal X‐ray diffraction analysis. The hydrolysis of 1A – 5C was monitored using UV–visible spectra. Complexes 3A – 3C showed catalytic activity for the oxidation of NADH to NAD+, where 3C showed the highest turnover number of 29.9 within 450 min. Cytotoxicity examination by MTT assay was carried out against two human cancer cell lines (HeLa and A549) after 24 or 48 h drug treatment. The complexes showed high potency, where the most potent complex ( 3C ; IC50 = 3.4 μM) was six times more active than cisplatin against A549 cells after 24 h drug exposure. Cytotoxic potency towards A549 cells increased with phenyl substitution on Cp ring: Cpxbiph > Cpxph > Cp*. In addition, the biological studies showed that 3C caused cell apoptosis and cell cycle arrest at G1 phase in A549 cancer cells. Moreover, 3C increased the level of reactive oxygen species markedly after 24 h, which may provide an important basis for killing cancer cells. Confocal laser scanning microscopy was used to track 3C in A549 cells. The cellular localization experiment showed that 3C targeted lysosomes and caused lysosomal damage.  相似文献   
9.
By combining microfiber spinning techniques with aqueous two phase system (ATPS), a rapid and simple strategy to fabricate water-in-water (w/w) droplets encapsulated in microfibers was proposed for the first time. Hydrophilic environment in hydrogel and the fiber format facilitates higher biocompatibility, convenient manipulation of the droplets and recycling of the contents inside droplets, which would have promising development in biological, pharmacological and environmental fields.  相似文献   
10.
The low-cost, high specific surface area and porosity, controlled pore size, and chemical properties of metal–organic framework (MOF) materials have attracted much attention in the exploration of proton conduction. The method of chemically modifying MOF structures or introducing conductive medium into the holes can effectively improve the proton conductivities of the materials. Here, the structural tunability of ionic liquid (IL) and flexible MOF (fle-MOF) materials are matched to give full play to the conductivity of IL, the framework support, and the microporous effect of MOFs, which achieves the synergistic effect of performance and expands the temperature range of proton transfer. Three kinds of CS/IL@fle-MOF membranes were prepared by combining three fle-MOFs with 1-carboxymethyl-3-methylimidazole (CMMIM) in different proportions to obtain 15 pieces of membranes. The comparative analyses show that CS/IL@fle-MOF membranes have excellent proton conduction performance at a wider temperature range (263–353 K) and lower relative humidity (75% RH). Among them, the proton conductivities of CS/CMMIM@MIL-88A-25% and CS/CMMIM@MIL-88B-125% are up to 1.33 and 1.42 S cm−1 at 75% RH and 353 K, respectively; whereas those of CS/CMMIM@MIL-53(Fe)-75% and CS/CMMIM@MIL-88B-125% reach up to 2.1 × 10−3 and 1.28 × 10−3 S cm−1 at 75% RH and 263 K, respectively. The Ea of CS/CMMIM@fle-MOFs is in the range of 0.1–0.5 eV, suggesting that the proton transport follows predominantly the typical Grotthuss transfer mechanism. The results of this study indicate that the CS/CMMIM@fle-MOF membranes combinations offer great potential for the design of composite porous proton-conducting materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号